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Introduction 
Workload remains one of the most sought-after EEG-based measures in the context of 
neuroergonomics and neuroadaptive technology, given the high potential utility of its real-time 
detection in productive environments [1]. For real-world applications, a workload classifier that does 
not require (re-)calibration across different contexts, tasks, or users is of particular interest (e.g., [2]). 
In previous work, we have developed a workload calibration paradigm that calibrates in under ten 
minutes, with a corresponding classifier that appears to function well across tasks [3,4], particularly 
when looking at continuous rather than binary classifier output values [5]. Here, we expand on this 
work with a new selection of tasks and additional “scaling tasks” to further improve performance. 

As shown in [5] and [6], a continuous interpretation of classifier output can help when translating 
values between tasks or contexts. For example, imagine a classifier that is calibrated on “high” versus 
“low” workload, where “high” load is induced using a particularly difficult arithmetic task. Because of 
this difficulty, both “high” and “low” conditions in different, subsequent task may both be relatively 
easy in comparison, resulting in a “low” workload detection by the classifier regardless of the actual 
condition. When looking at continuous classifier outputs rather than binary categorizations, 
however, this same classifier may still produce statistically significant differences between the two 
conditions. In other words, when the threshold between “high” and “low” is 0.5, interpreting both .1 
and .4 simply as “low” ignores the meaningful difference that exists between them. 

The effective workload induced by a standard calibration task can differ per participant depending on 
their skill or experience with respect to that task. The range of mental exertion thus captured by a 
classifier will differ, and may not correspond to or even include the range of exertion that that same 
individual would experience during a different task. To account for this, we propose using additional 
tasks to quantify participants’ skills. For this experiment, we hypothesized that different tasks induce 
workload to different extents, that a continuous interpretation of classifier output reflects these 
differences better than a binary interpretation, and that the aforementioned quantifications can 
additionally scale the classifier output to cover a range appropriate for different tasks and skills. 

Participants, Tasks, and Methods 
20 participants aged 20-39 were first given four scaling tasks to measure their general ability in four 
areas: mental arithmetic using a version of the computer-based MATH test [7], spatial cognition 
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using a pen-and-paper mental rotation test [8], linguistic ability using the German, pen-and-paper 
Mehrfachwahl-Wortschatz Test B [9], and short-term memory span using a computer-based version 
of the corresponding part of the Wechsler Adult Intelligence Scale IV [10]. Following this, 64-channel 
EEG (Brain Products actiCHamp) was recorded while participants performed the calibration task 
previously described in [3] and [5]. Then, in random order, they performed five more tasks: 1. An 
addition task (AD) requiring them to add two three-digit numbers in either high or low difficulty 
conditions (Q-values [11] >4 or <2); 2. A word recovery task (WR) where participants were shown 
words with letters in random order and were required to “unscramble” them, these words being 
longer, less common words (high workload) or shorter, more common words (low workload); 3. A 
mental rotation task (MR) using stimuli from [12], with difficulty varied by rotating the stimuli to 
different degrees across two planes (high) or one plane (low); 4. A backward digit span task (BDS) 
where participants were given a sequence of 5 (high) or 3 (low) digits one after the other and asked 
to reproduce it in reverse order; 5. An n-back task (NB) [13] with n=2 (high) and n=1 (low). 

We trained individual classifiers for each participant on the data from the calibration task, and 
applied it to their data from the remaining five tasks. For this, data from each of the variable-length 
trials was segmented into 1-second epochs resulting in at least 150 epochs per class per task. A filter-
bank common spatial patterns (FB-CSP, [14]) approach was used using frequency bands 4-7 and 8-13 
Hz. The top three filter pairs were used to train a classifier using regularized linear discriminant 
analysis (LDA). In a first analysis, the trained classifier was applied in a binary fashion to the data of 
the five tasks. In a second analysis, the raw classifier output was used instead and inserted as 
dependent variable into a 2x5 (condition x task) repeated-measures analysis of variance (rmANOVA) 
across all participants. Bonferroni-adjusted pairwise comparisons were calculated to test for effects. 

Results and Conclusion 
For the first, binary analysis, average accuracies across participants for the five tasks were not 
significant, ranging between 46 and 50%. This was expected, as explained above. The rmANOVA 
results, however, showed a significant main effect of condition (F(1, 19) = 25.59, p < .001, ηp

2 = .57), 
indicating that “high” conditions did result in significantly higher classifier output across all five tasks.  

Fig. 1 illustrates the different values for the 
five tasks separately. Some tasks, e.g. the n-
back, appear to consistently induce a higher 
load than e.g. the mental rotation task, which 
would confound binary classification, but still 
show significant differences between 
conditions. Pairwise comparison tests 
indicated that this effect was significant for 
all tasks but WR. 

At the time of writing, the scaling tasks have 
not yet been included in the analysis, but the 
different levels of overall average workload 
across tasks, as seen in the figure, indicate 
that a scaling is useful. The next step is thus 
to evaluate how the participants’ scores on 
the scaling tasks correlate with their 
workload levels across tasks. 

Fig. 1: Simple effects of factor condition from the rmANOVA. 
Asterisks indicate significance at, at least, α = 0.05. 
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All in all, the results provide additional indications that a continuous approach, rather than a binary 
(“low” versus “high”) approach to workload classification is a viable method to obtain meaningful 
workload measures from EEG. 
(This work was supported by the U.S. Air Force, FA8655-20-1-7007.)

References 
1. Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2015). State of science:

mental workload in ergonomics. Ergonomics, 58(1), 1–17. doi:
10.1080/00140139.2014.956151

2. Mühl, C., Jeunet, C., & Lotte, F. (2014). EEG-based workload estimation across affective
contexts. Frontiers in Neuroscience, 8, 114. doi: 10.3389/fnins.2014.00114

3. Krol, L. R., Freytag, S.-C., Fleck, M., Gramann, K., & Zander, T. O. (2016). A task-independent
workload classifier for neuroadaptive technology: Preliminary data. In 2016 IEEE
International Conference on Systems, Man, and Cybernetics (SMC) (pp. 003171–003174). doi:
10.1109/SMC.2016.7844722

4. Andreessen, L. M., Gerjets, P., Meurers, D., & Zander, T. O. (2021). Toward neuroadaptive
support technologies for improving digital reading: a passive BCI-based assessment of mental
workload imposed by text difficulty and presentation speed during reading. User Modeling
and User-Adapted Interaction, 13, 75–104. doi: 10.1007/s11257-020-09273-5

5. Zhang, X., Krol, L. R., & Zander, T. O. (2018). Towards task-independent workload
classification: Shifting from binary to continuous classification. In 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC) (pp. 556–561). doi:
10.1109/SMC.2018.00104

6. Krol, L. R., Klaproth, O. W., Vernaleken, C., Russwinkel, N., & Zander, T. O. (2022). Towards
neuroadaptive modeling: assessing the cognitive states of pilots through passive brain-
computer interfacing. In S. H. Fairclough & T. O. Zander (Eds.), Current research in
neuroadaptive technology (pp. 59–73). London, UK: Academic Press. doi: 10.1016/B978-0-12-
821413-8.00009-9

7. Turner, J. R., Hewitt, J. K., Morgan, R. K., Sims, J., Carroll, D., & Kelly, K. A. (1986). Graded
mental arithmetic as an active psychological challenge. International Journal of
Psychophysiology, 3(4), 307–309. doi: 10.1016/0167-8760(86)90039-5

8. Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A
redrawn Vandenberg and Kuse mental rotations test - different versions and factors that
affect performance. Brain and Cognition, 28(1), 39–58. doi: 10.1006/brcg.1995.1032

9. Lehrl, S. (2005). Mehrfachwahl-Wortschatz-Intelligenztest: MWT-B (5. Auflage). Spitta GmbH.
10. Wechsler, D. (2008). Wechsler Adult Intelligence Scale - Fourth Edition (WAIS-IV). APA

PsycTests. doi: 10.1037/t15169-000
11. Thomas, H. B. G. (1963). Communication theory and the constellation hypothesis of

calculation. Quarterly Journal of Experimental Psychology, 15(3), 173–191. doi:
10.1080/17470216308416323

12. Peters, M., & Battista, C. (2008). Applications of mental rotation figures of the Shepard and
Metzler type and description of a mental rotation stimulus library. Brain and Cognition,
66(3), 260–264. doi: 10.1016/j.bandc.2007.09.003

13. Kirchner, W. L. (1958). Age differences in short-term retention of rapidly changing
information. Journal of Experimental Psychology, 55(4), 352–358. doi: 10.1037/h0043688

14. Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. (2008). Filter bank common spatial pattern
(FBCSP) in brain-computer interface. In IEEE International Joint Conference on Neural
Networks (IJCNN), 2008 (pp. 2390–2397). doi: 10.1109/IJCNN.2008.4634130



This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

© 2022 Society for Neuroadaptive Technology

The Third
Neuroadaptive Technology Conference

Conference Programme




