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‘We are what we think. All that we are arises with our thoughts.
With our thoughts, we make the world.’

Siddharta Gautama, the Buddha,
Dhp I:1 as rendered by Thomas Byrom

Byrom, T. (1976). Dhammapada: The Sayings
of the Buddha. Boston, MA, US: Shambhala.





‘We are governed, our minds are molded, our tastes formed, our ideas suggested,
largely by men we have never heard of. . . . we are dominated by the relatively
small number of persons . . . who understand the mental processes and social
patterns of the masses.’

Edward L. Bernays

Bernays, E. L. (1928). Propaganda. New York,
NY, US: Horace Liveright.





‘I am Locutus of Borg. You will respond to my questions.’

Captain Jean-Luc Picard

Roddenberry, G., Moore, R.D., & Taylor, J.
(Writers), Berman, R.K. (Producer), & Singer,
A. (Director). (1993). Descent: Part I. In Star
Trek: The Next Generation. Los Angeles, CA,
USA: Paramount Studios.
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| Summary
Thisdissertationpresents conceptual,methodological, andexperimental advances in the
field of neuroadaptive technology. Neuroadaptive technology refers to the category of
technology that uses implicit input obtained from brain activity using a passive brain-
computer interface in order to adapt itself, e.g. to enable implicit control or implicit in-
teraction. Implicit input refers to any input obtained by a receiver that was not intended
as such by the sender. Neuroadaptive technology thus detects naturally-occurring brain
activity that was not intended for communication or control, and uses it to enable novel
human-computer interaction paradigms.

Part I provides conceptual frameworks to unify previous works and guide future re-
search. Chapter 1 reviewsexistingapplicationsofpassivebrain-computer interfacingand
suggests their level of interactivity to be a key parameter, ranging from mental state as-
sessment, through open- and closed-loop adaptation, to forms of automated or intelli-
gent adaptation. Systems in this latter category necessarily possess some autonomy to
guide the interaction according to their own goals. Chapter 2 explains how this auton-
omy can be used for cognitive probing: a method in which the technology deliberately
elicits a brain response from the user in order to learn from it. This allows neuroadaptive
technology to exploit the fact thathumanbrains automatically respond to the events they
perceive. The gathered information can be used to further optimise the interaction, but
canalsobeused inadverseways. Chapter 2 thereforediscusses anumberof technological
and ethical issues surrounding this method.

Part II introduces two tools to help validate some coremethods related to neuroadap-
tive technology. Chapter 3 describes SEREEGA (Simulating Event-Related EEG Activity),
a free and open source toolbox to simulate event-related electroencephalographic (EEG)
activity. Because simulated data has a known ground truth, it can be used to evaluate
and validate analysis methods. SEREEGA covers and extends the vast majority of past
and present-day EEG simulation approaches. Chapter 4 then uses such simulated data
to validate a classifier visualisationmethod. Thismethod allows a number of commonly-
usedclassificationalgorithms tobevisualised inavirtual brain, revealingwhich (cortical)
areas the classifier focused on. This provides important insight to validate the classifier
itself andneuroadaptive technologymore broadly. It also provides a newclassifier-based
analysis method for neuroscientific research in general.

Part III presents two experimental studies illustrating the technology described in
Part I, using the methods from Part II. Chapter 5 demonstrates how neuroadaptive tech-
nology can be used to enable implicit cursor control using cognitive probing. By re-
peatedly eliciting brain responses to initially random cursor movements, and classify-
ing these responses as reflecting either positive or negative interpretations of eachmove-
ment, a computer can gradually reinforce the cursor to move in the direction desired by
the observer. Importantly, the observer need not be aware of this happening. Chapter 6
presents additional analyses of this paradigm, revealing that brain activity elicited by the
cursor movements can indeed reflect internal, subjective interpretations. These experi-
ments highlight both the potential benefits and the potential risks addressed in Part I.
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| Zusammenfassung
In dieser Dissertation werden konzeptuelle, methodologische, und experimentelle Fort-
schritte aufdemGebietderneuroadaptivenTechnologie vorgestellt.NeuroadaptiveTech-
nologie bezieht sich auf die Kategorie der Technologien, die impliziten Input aus der
HirnaktivitätunterVerwendungeinerpassivenHirn-Computer-Schnittstelle verwenden,
um sich selbst anzupassen, z.B. um implizite Kontrolle oder implizite Interaktion zu er-
möglichen. Impliziter Input bezeichnet jede Eingabe, die von einem Empfänger erhal-
ten wird, jedoch von dem Sender nicht als solche beabsichtigt war. Die neuroadapti-
ve Technologie erkennt also natürlich auftretende Hirnaktivität, die nicht für Kommu-
nikation oder Kontrolle gedacht war, und nutzt sie, um neuartige Mensch-Computer-
Interaktionsparadigmen zu ermöglichen.

Teil I bietet einen konzeptuellen Rahmen, um frühere Arbeiten zu vereinheitlichen
und zukünftige Forschung anzuleiten. Kapitel 1 gibt dazu einen Überblick über bestehen-
de Anwendungen von passiven Hirn-Computer-Schnittstellen und schlägt vor, dass der
Grad ihrer Interaktivität ein wichtiger Parameter mit den folgenden vier Stufen ist: ers-
tens die Erkennung des mentalen Zustands des Menschen an sich, zweitens die Anpas-
sung imoffenenunddrittens imgeschlossenenRegelkreis, und viertens die automatisier-
te bzw. intelligente Anpassung. Systeme der letztgenannten Kategorie verfügen notwen-
digerweise über eine gewisse Autonomie, umdie Interaktion entsprechend ihrer eigenen
Ziele zu steuern. InKapitel 2wird erläutert,wiedieseAutonomie für cognitive probing (‘ko-
gnitive Sondierung’) genutzt werden kann: eine Methode, bei der die Technologie dem
Benutzer absichtlich eine Gehirnreaktion entlockt, um aus dieser Reaktion etwas lernen
zu können. Hierbei wird die Tatsache ausgenutzt, dass das menschliche Gehirn automa-
tischaufdie von ihmwahrgenommenenEreignisse reagiert.Die gelernten Informationen
können zur weiteren Optimierung der Interaktion genutzt werden; sie können aber auch
in für den Nutzer nachteiliger Weise eingesetzt werden. In Kapitel 2 werden daher eine
Reihe von technologischen und ethischen Fragen in Zusammenhangmit dieserMethode
diskutiert.

Teil II stellt zwei Werkzeuge vor, die bei der Validierung einiger Kernmethoden der
neuroadaptiven Technologie helfen sollen. Kapitel 3 beschreibt SEREEGA (Simulating
Event-Related EEG Activity), eine kostenlose und quelloffene Toolbox zur Simulation er-
eigniskorrelierter elektroenzephalographischer (EEG)Aktivität.Weil von simuliertenDa-
ten bekannt ist welche Prozesse ihnen zugrunde liegen, können sie zur Bewertung und
Validierung von Analysemethoden verwendet werden. SEREEGA deckt die überwiegen-
de Mehrheit der vergangenen und aktuellen EEG-Simulationsansätze ab und erweitert
diese. Kapitel 4 verwendet daraufhin solche simulierten Daten, um eine Klassifikator-
Visualisierungsmethode zu validieren. DieseMethode ermöglicht es, mehrere häufig ver-
wendete Klassifikationsalgorithmen in einem virtuellen Gehirn zu visualisieren und zu
erkennen, auf welche (kortikalen) Bereiche sich der Klassifikator konzentriert hat. Dies
liefertwichtige Erkenntnisse, um sowohl denKlassifikator selbst als auch die neuroadap-
tive Technologie im weiteren Sinne zu validieren. Es bietet auch eine neue klassifikator-
basierte Analysemethode für die neurowissenschaftliche Forschung im Allgemeinen.

In Teil III werden zwei experimentelle Studien vorgestellt, die die in Teil I beschrie-
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bene Technologie unter Verwendung der Methoden aus Teil II veranschaulichen. Kapi-
tel 5 zeigt, wie die neuroadaptive Technologie eingesetzt werden kann, um eine impli-
zite Cursorsteuerung mittels cognitive probing zu ermöglichen. Durch wiederholtes Aus-
lösen von Gehirnreaktionen auf anfänglich zufällige Cursorbewegungen, und die Klassi-
fizierung dieser Reaktionen als entweder positive oder negative Interpretationen der je-
weiligen Bewegung, kann ein Computer den Cursor allmählich so steuern, dass er sich
in die vom Beobachter gewünschte Richtung bewegt. Wichtig ist, dass sich der Beobach-
ter dieses Vorgangs nicht bewusst sein muss. In Kapitel 6 werden zusätzliche Analysen
dieses Paradigmas vorgestellt, die zeigen, dass die durch die Cursorbewegungen ausge-
löste Hirnaktivität tatsächlich interne, subjektive Interpretationen widerspiegeln kann.
Diese Experimente heben sowohl den potenziellen Nutzen als auch die potenziellen Risi-
ken hervor, die in Teil I angedeutet wurden.

18



| List of Publications
Thenumbered chapters in this dissertation correspond to the following published or sub-
mittedmanuscripts. Included are either postprint (Chapters 1–5) or preprint (Chapter 6)
versions.

1. Krol, L. R., Andreessen, L.M., & Zander, T. O. (2018). Passive Brain-Computer Inter-
faces: A Perspective on Increased Interactivity. In C. S. Nam, A. Nijholt, & F. Lotte
(Eds.), Brain-Computer Interfaces Handbook: Technological and Theoretical Advances
(pp. 69-86). Boca Raton, FL, USA: CRC Press. ISBN: 9781498773430. (Postprint.)

2. Krol, L. R., Haselager, P., & Zander, T. O. (2020). Cognitive and affective probing:
a tutorial and review of active learning for neuroadaptive technology. Journal of
Neural Engineering, 17(1), 012001. doi: 10.1088/1741-2552/ab5bb5. (Postprint.)

3. Krol, L. R., Pawlitzki, J., Lotte, F., Gramann, K., & Zander, T. O. (2018). SEREEGA:
Simulating event-related EEG activity. Journal of Neuroscience Methods, 309, 13-24.
doi: 10.1016/j.jneumeth.2018.08.001. (Postprint.)

4. Krol, L. R., Mousavi, M., de Sa, V. R., & Zander, T. O. (2018). Towards Classifier
Visualisation in 3D Source Space. In 2018 IEEE International Conference on Systems,
Man andCybernetics (SMC) (pp. 71–76). doi: 10.1109/SMC.2018.00022. (Postprint.)

5. Zander, T. O., Krol, L. R.*, Birbaumer, N. P., & Gramann, K. (2016). Neuroadaptive
technology enables implicit cursor control based on medial prefrontal cortex ac-
tivity. Proceedings of the National Academy of Sciences, 113(52), 14898–14903. doi:
10.1073/pnas.1605155114. (Postprint.)

6. Krol, L. R., Pawlitzki, J., Gramann, K. & Zander, T. O. (submitted). Investigating
the separation of salience and valence in implicit cursor control. Proceedings of the
National Academy of Sciences. (Preprint.)

*Shared first authorship.

19

https://dx.doi.org/10.1088/1741-2552/ab5bb5
https://dx.doi.org/10.1016/j.jneumeth.2018.08.001
https://dx.doi.org/10.1109/SMC.2018.00022
https://dx.doi.org/10.1073/pnas.1605155114




Figure 1: Donald Duck wearing a ‘brain-scan cap’ invented by Gyro Gearloose.
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| Introduction
As evidenced by Figure 1 and a number of films including Eternal Sunshine of the Spot-
less Mind (2004) and The Discovery (2017), the idea of directly connecting our brains to
machines has captured popular fascination. It is no longer limited to futuristic genres
of science fiction, where such ideas had already taken root much earlier—at least since
the 1950s. In Anderson’s (1957) Call Me Joe, for example, a wheelchair-bound man uses
a ‘psionic’ head-mounted device to project his neural activity across great distances, al-
lowing him to live an all-too-real life in another being’s body. Roelfsema, Denys, and
Klink (2018)mention a novel on this topic going as far back as the early 1930s—the same
decade in which, allegedly, even Nikola Tesla intended to investigate a ‘thought projec-
tor’, allowing thoughts to be visualised, albeit not directly from the brain itself—the prin-
ciplewas supposedly for the optic nerve to be bidirectional, allowing brain activity repre-
senting imagined visuals to be read off the retina (Tesla & Childress, 1993). Whereas this
particular idea obviously did not come to fruition, we can look back on a number of ac-
tualmilestones in the past near-century that illustrate remarkable progress in the field of
neurotechnology—an inclusive term essentially referring to any form of technology that
monitors or manipulates activity in the central nervous system (CNS). Progress in this
field is ongoing and accelerating, moving what was previously science fiction ever closer
to reality. In themore recent past, research hasmoved outside of the traditional laborato-
ries intomore naturalistic settings (Makeig, Gramann, Jung, Sejnowski,& Poizner, 2009),
direct-to-consumer neurotechnology has become widely available to the general pub-
lic (Ienca, Haselager, & Emanuel, 2018), and internationally renowned companies have
begun conducting and funding research in both medical and consumer applications, in-
creasingpublic awareness even further (Musk&Neuralink, 2019;Moses, Leonard,Makin,
& Chang, 2019).

From science fiction, to popular entertainment, to reality: It is the main argument
of this dissertation that neuroadaptive technology—defined further below—has now suffi-
ciently progressed towarrant bothwidespread interest andwidespread concern. To that
end, the works in this dissertation serve to examine and demonstrate the current reality
with respect toneuroadaptive technology. This dissertationfirst describes someof the ca-
pabilities of neuroadaptive technology andhow it can be used, both on a conceptual level
and with respect to already-published work, highlighting the advantages of such tech-
nology as well as a number of potential risks. Tools are then introduced to support the
analysis of an experimental demonstration of neuroadaptive technology. As this demon-
stration shows, it is now possible to implement control based on the brain activity of un-
witting participants, who remain unaware of having any influence even as their brain ac-
tivity guides a virtual object. Furthermore, the final chapter demonstrates that neuroad-
aptive technology can access subjective value-related processes. These and other demon-
strations illustrate how neuroadaptive technology can greatly benefit human-computer
interaction by realising goal-oriented and supportive behaviours without requiring any
effort from the user. At the same time, they illustrate how these applications require con-
sideration of the user’s rightswith respect to, among other issues, informed consent, out-
come responsibility, and privacy of thought.
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A Brief History of Brain-Computer Interfacing

One of the earliest milestones in the development of neurotechnology was achieved on
July 6th, 1924, when Berger (1929) first observed electrical activity in a human brain, us-
ing a technique that had previously been performed only on animals. A recording of such
electrical brain activity over time is, following Berger’s suggestion, called an electroen-
cephalogram,with the technique ingeneralbeing referred toas electroencephalography, and
the abbreviation EEG being used for either of these two words. Already at that time it
was known that this electrical brain activity was influenced by outside stimuli, such as a
bright light shone into the eyes of the animal under investigation. Berger, however, was
specifically interested in the influence of internal changes on the recorded EEG: he spec-
ulated that human EEG recordings might be used to diagnose medical conditions on the
basis of pathological activity, and cautiously noted first indications—in his own son’s
EEG—that different intensities of mental activity led to visible changes in the recorded
curves.

We now know that EEG does indeed reflect internal cognitive processes. Another sig-
nificant development in that regard is the use of the event-related potential (ERP) tech-
nique (Luck, 2014). This was the first of a number of techniques that allowed researchers
to systematically and accurately associate the brain’s neuroelectric activity with specific
events, and investigate this activity as a function of these events’ physical or conceptual
properties. Whereas the first such studies were probably performed in the late 1930s
(Davis, Davis, Loomis, Harvey, & Hobart, 1939 as cited by Luck, 2014), the utility of the
techniquewas greatly improved by the later use of computerswhich could automatically
gather multiple stimulus-response pairs and average the responses together, thus can-
celling out brain activity that was not related to the event. This technique revealed clear
cognitive components to the observed activity (e.g., W. G. Walter, Cooper, Aldridge, Mc-
Callum, &Winter, 1964).

The ERP technique thus allowed responses to specific events to be interpreted on the
basis of a post hoc analysis of all gathered data. The first step towards interpreting event-
related brain activity in real time was taken in the 1970s, by J. J. Vidal (1973). In order to
identify certain patterns of brain activity immediately following their occurrence, Vidal
suggested ‘treating the experiment as a signal detection problem’ (J. J. Vidal, 1977): with
continuous access to an ongoing EEG recording, a computer classified incoming data as
belonging to one of four categories, based on previously learned (and continuously up-
dated) decision strategies. Specifically, Vidal’s apparatus flashed a bright chequerboard
pattern in order to elicit activity in the visual cortex. Due to the retinotopic mapping of
the visual cortex, this activity had a different spatial distribution depending on whether
the human participantwas looking at a point to the left, right, top, or bottomof the flash-
ing pattern. The computer could decode this from the recorded brain activity in real time,
allowing the participant to control the movement of an object on a computer screen in
four directions.

With this project, Vidal coined the term brain-computer interface (BCI; J. J. Vidal, 1973),
now referring to any system that translates a measurement of CNS activity into artificial
input to a computer, ‘thereby changing the ongoing interactions between theCNS and its
external or internal environment’ (J. R. Wolpaw & Wolpaw, 2012). Where natural com-
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munication channels rely on muscular activity (e.g. to write, type, gesture, speak) or on
hormonal changes (e.g. internal signalling, pheromones), a BCI thus establishes a differ-
ent, part-artificial communication channel that bypasses these faculties, and provides a
computer with real-time access to an interpretation of our mental states to the extent
that they can be decoded from our brain activity.

Vidal speculated upon a wide range of potential future applications of BCI technol-
ogy, including general neuroscientific research, computer-assisted learning tuned to op-
timal brain states, and, perhaps somewhat tongue-in-cheek, controlling spaceships. But
itwas in twoof thefieldshe suggested thatBCIfirst gainedwidespreadattention: human-
computer communication and neuroprosthetic control. In particular, BCI technology
offered a unique potential to support paralysed or otherwise motor-impaired patients
(J. R. Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002). It was these
people, not students or astronauts, who stood to benefit the most from this technology.
Therefore, the primary focus of BCI research has long been on developing a practical
means for direct, brain-based communication and control. This has resulted in a num-
ber of different mental speller devices (e.g., Farwell & Donchin, 1988; Treder, Schmidt, &
Blankertz, 2011) and brain-actuated prostheses (e.g., Müller-Putz & Pfurtscheller, 2008;
Vansteensel et al., 2016), allowing patients to e.g. write letters (Birbaumer et al., 1999),
control wheelchairs (Iturrate, Antelis, Kübler, & Minguez, 2009), browse the internet
(Mugler, Ruf, Halder, Bensch, & Kübler, 2010), paint (Münßinger et al., 2010), or move
artificial limbs (J. R. Wolpaw&McFarland, 2008) using only their brain activity.

These and other applications have been improved throughout the past decades, in
particular through improved reliability of the BCI methodology itself. Due to the non-
stationarity of EEG activity, internal and environmental artefacts, and the general diffi-
culty people can have in learning tomodulate specific brain activity in and of itself, early
applications sometimes required the user to be trained for many months before being
able to meaningfully control a BCI system (Birbaumer, 2006). A major paradigm shift
occurred when methods of machine learning were applied to BCI at the start of the cur-
rent millennium (e.g., Ramoser, Müller-Gerking, & Pfurtscheller, 2000; Blankertz, Curio,
& Müller, 2002; Lotte, Congedo, Lécuyer, Lamarche, & Arnaldi, 2007). As opposed to
users training to generate specific machine-mandated andmachine-detectable patterns
in their EEG, machine learning techniques allowed the training effort to be shifted to
the computer: based on a large number of recorded samples, the machine could learn
to extract more complex patterns from the user’s EEG. These patterns could then also re-
flect less forced, less artificial,more natural aspects of human cognition such as imagined
movement.

As a generic example, a BCI pipelinemay consist of the following components. First, a
training set is recorded, containing brain activity that is indicative of at least two different
mental states. This must not necessarily be done using EEG; magnetoencephalography,
functional near-infrared spectroscopy, and functional magnetic resonance imaging are
commonlyusedaswell (e.g.,Mellingeret al., 2007; Soloveyetal., 2012; Lorenzetal., 2016).
These recordings usually represent a continuous stream of brain activity, fromwhich the
relevant segments must be extracted. A series of processing steps therefore reduce these
segments to features. The different mental states, now represented by different classes of
features, can then be described by the distributions of their corresponding features. A
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classifier is then trained or calibrated on these features, learning their distributions. This
classifier is then capable of classifying newly incoming data as belonging to one of the
previously-learned classes, based onwhere the newly extracted features of the incoming
data fall within the previously-learned distributions.

As these and other machine learning techniques allowed complex natural patterns
of brain activity to be detected in real time, some of the ideas already speculated upon
by Berger and Vidal were slowly rekindled: that this methodology could be used to de-
tect and decode different naturally-occurring mental states, allowing computers to sup-
port us in our everyday tasks. These types of applications appeared to have been largely
forgotten due to the BCI research community’s focus on medical interventions, to the
point that theywere in fact excluded from awidely accepted definition of BCI at the time
(J. R. Wolpaw et al., 2002). At that same time, however, the field of human-computer in-
teraction had a long history of exploring different naturalistic communication and inter-
action techniques (e.g., Jacob et al., 2008), and itwas in this community that in 2008, dif-
ferent research groups presented the concept of using naturally-occurring mental states
in human-computer interaction scenarios (Girouard, Hirshfield, Solovey, & Jacob, 2008;
Cutrell & Tan, 2008; Zander, Kothe, Jatzev, et al., 2008). In particular, Zander and col-
leagues presented a form of EEG-based ‘passive control’, in which the addition of a BCI
pipeline, which could detect and correct perceived errors without requiring additional
voluntary actions from the users, led to a significant performance increase in an other-
wise regular human-computer interaction scenario (Zander, Kothe, Jatzev, et al., 2008).
Zander’s subsequently proposed formal categorisation of BCI applications expanded the
prevailingdefinitions to include this category of passive BCI systems, thus introducing the
term (Zander, Kothe, Welke, & Rötting, 2008; Zander & Kothe, 2011; Krol, Andreessen, &
Zander, 2018).

In passive BCI systems, the communication channel that is established carries input
to the computer that was not intended as such by the human. For example, when a hu-
manoperatorbecomes fatiguedover time, or temporarilyoverburdenedby increased task
demands, this may lead to a detectable change in their brain activity, allowing a com-
puter to automatically implement supportive measures. In such a case, the operator did
not explicitly instruct the system to do so, nor did they voluntarilymanipulate their brain
activity; nonetheless, through this brain activity, the operator did provide input that re-
sulted in thesemeasures being taken. Implicit input refers to input that was not intended
as such by the human, but is nonetheless used as input by the computer (Schmidt, 2000;
Rötting, Zander, Trösterer, & Dzaack, 2009; Zander, Brönstrup, Lorenz, & Krol, 2014).

Over time, the reintroduction of these ideas changed the field of BCI research, which
had long stressed volitional communication and control. BCI researchers were initially
divided on the question whether or not passive BCI systems should be considered exam-
ples of brain-computer interfacing at all (Nijboer, Clausen, Allison, & Haselager, 2013),
and it was criticised that passive BCI’s reliance on ‘intention’ cannot be neuroscientif-
ically operationalised (J. R. Wolpaw & Wolpaw, 2012). However, as more applications
and theories concerning passive BCI and implicit input were presented (e.g., Rötting et
al., 2009; Girouard et al., 2010; Zander & Jatzev, 2012; E. A. Kirchner et al., 2013), the for-
mal definition of BCI was updated in 2012 to embrace the concept (J. R. Wolpaw &Wol-
paw, 2012). Passive BCI applications were furthermore identified as one of the guiding
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principles for future BCI research (Brunner et al., 2015), and in the past years, the relative
portion of research targeting people with disabilities appears to be declining, with an in-
creasing number of publications now focusing on the opportunities passive BCI can offer
to the healthy population (Eddy et al., 2019).

At present, new machine learning methods continue to be developed and existing
methods continue to be improved, providing increased reliability and opening up new
applications for BCI technology (Lotte et al., 2018). For example, adaptive classifiers
continuously update their parameters allowing them to track changing feature distribu-
tions (Shenoy, Krauledat, Blankertz, Rao, &Müller, 2006; Lotte et al., 2018), and transfer
learning allows classifiers trained in one condition to be used in another, e.g. across ses-
sions, across tasks, or across participants (Pan & Yang, 2010; Lotte et al., 2018). Further-
more, EEGhardwarehasbecome increasingly accessible to thegeneral public (Ienca et al.,
2018), tickling the public imagination, as e.g. evident from the various hackathons being
organised in the field (Guger, Allison,Walchshofer, & Breinbauer, 2019). Whereas direct,
explicit control continues to be a popular paradigm, human-computer interaction based
on implicit input—i.e. implicit interaction—is an avenue where BCI technology can have
a truly unique impact. The most recent development in this field is the move towards
neuroadaptive technology.

Neuroadaptive Technology

What kinds of neurotechnology have authors of hard science fiction conceived of more
recently, as possible future applications? Here is an excerpt from the Hugo-nominated
novel Blindsight (Watts, 2006):

Szpindel cleared his throat. “Try this one.”

The feedshowedwhat she saw: a small black triangleonawhitebackground.
In the next instant it shattered into a dozen identical copies, and a dozen
dozen. The proliferating brood rotated around the center screen, geometric
primitives ballroom-dancing in precise formation, each sprouting smaller
triangles from its tips, fractalizing, rotating, evolving into an infinite, intri-
cate tilework...

A sketchpad, I realized. An interactive eyewitness reconstruction, without
the verbiage. Susan’s own pattern-matching wetware reacted to what she
saw—no, there were more of them; no, the orientation’s wrong; yes, that’s it, but
bigger—and Szpindel’smachine picked those reactions right out of her head
and amended the display in realtime. It was a big step up from that half-
assed workaround called language. The easily-impressed might have even
called it mind-reading.

The implication here* is that our brains (our ‘pattern-matching wetware’) cannot
help but react to the stimuli we perceive. When presented with something, our brains
inevitably interpret it and produce an internal response, even if no explicit (e.g. verbal)

*Confirmed through personal correspondence.
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response is required. The device described here essentially uses a passive BCI, detecting
and interpreting these automatic responses. This implicit input is then used to adjust the
display in a closed-loop fashion and to reconstruct, step by step, what Susan thinks she
saw.

This is a prime example of neuroadaptive technology. Pending a more formal, peer-
revieweddefinition, neuroadaptive technology refers to any technology thatuses implicit
input obtained from brain activity in order to adapt itself, e.g. to enable control or inter-
action. The term ‘neuroadaptive technology’ itself as representing this line of research
was suggested by Scott Makeig and chosen by consensus at the Passive BCI Commu-
nity Meeting in Delmenhorst, 2014, attended by experts from different fields working
on similar or otherwise overlapping research, including physiological computing, cyber-
netics, brain-computer interfacing, computational neuroscience, neuroergonomics, and
human-computer interaction. The term appears to have first been used, with largely this
same meaning, in 2003 (Hettinger, Branco, Encarnacao, & Bonato, 2003), even before
passive BCI became a more prominent term. These days, passive BCI, referring to the
interface itself, canmore strictly be seen as a tool which can enable technology to be neu-
roadaptive.

To illustrate the concept inmore detail as it may presently be understood, let us turn
to a similar, more tangible example: imagine reading a neuroadaptive electronic book.
The appearance is that of any other electronic book. As a human being, you are, to vary-
ing degrees, sympathetic to the characters in the story and sensitive to their various
fates: when the fate of a beloved character appears to take a turn for the worse, you sym-
pathise and become saddened. All this is a natural, involuntary reaction to the story’s
progress, and, in this example, is reflected in detectable changes in your brain activity.
Our neuroadaptive book receives this emotional state as implicit input, and, being an
electronic book, it also knows what page is currently being read and what happens on
thatpage. Connectingyour suddenchange in emotional statewith the context inwhich it
appeared—our beloved character’s setback—thebook can infer your positive attitude to-
wards this character. It cannowre-write theupcomingpages on thefly to take advantage
of this newly-gained information, and can continue to do so page after page, compiling a
story uniquely catered to your implicitly communicatedmindset as you keep reading.

Since the story’s adaptations are happening on upcoming pages based on implicit in-
put, the reader could potentially be wholly unaware of what is happening in the back-
ground, and yet, it is the input coming from that same reader that is somehow guiding
the story. This means that, to the reader, the experience may be no different from that of
any other book: the neuroadaptive experience requires no conscious voluntary actions,
but simply happens based on activity that occurs naturally while reading. As such, how-
ever, the reader is at the mercy of the neuroadaptive logic, which may or may not be in
linewith the user’swishes: a readerwhomaywant a happy story could instead be served
their own personal worst ending.

Furthermore, an adaptive story, as it is committed to the book’s pages, may reveal
sensitive informationwhen read back by someone else. A reader inwhose individualised
version evil prevailed, for example, may not want others to know their apparently pre-
ferred outcome.

Finally, neuroadaptivity allows us to imagine an interesting scenario where the book
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does not have enough information to continue the plot line. When a decision is to be
made between different paths but the preferences of the reader are unclear, the book
could decide to postpone the decision and instead insert a chapter the primary purpose
of which is not for the reader to be further entertained, but for the book to obtain further
information regarding the reader’s preferences. A number of situations can be presented
simply to gauge the reader’s responses, on the basis of which the necessary information
to continue themain story can be inferred.

This example of a neuroadaptive book will stay with us throughout this dissertation,
as it highlights a number of important aspects of neuroadaptive technology. It illustrates,
for example, one of itsmain benefits: the implicit nature of the inputmeans that the user
does not have to exert any effort for this additional communication channel to be main-
tained. Thismakes it particularlyuseful in scenarioswherehighmental demand isplaced
on the operator, either to widen the human-computer communication bottleneck and
make the interaction more symmetrical (Suchman, 1987; Tufte, 1990), to detect and alle-
viate themental load using e.g. adaptive automation (Byrne & Parasuraman, 1996), or to
promote or sustain specific mental states.

For example, Kohlmorgen et al. (2007) has demonstrated how neuroadaptive tech-
nology candetectmental loadduringdrivingandautomatically adjust secondary tasks to
better suit the driver’s current state, as one illustration of many possible uses in neuroer-
gonomics and human-computer interaction (e.g., Frey, Appriou, Lotte, & Hachet, 2016;
Mehta & Parasuraman, 2013). Vidal’s suggestion to automatically detect mental states
and tune adaptive learning systems accordingly has also been demonstrated to be feasi-
ble. Yuksel et al. (2016) presented a neuroadaptive learning system that automatically
increased the difficulty level for students practising a musical piece whenever workload
levels dropped below an individually-determined threshold. C. Walter, Rosenstiel, Bog-
dan, Gerjets, and Spüler (2017) demonstrated an arithmetic learning environment that
both increased or decreased difficulty according to a measure of workload. In entertain-
ment, Ewing, Fairclough, and Gilleade (2016) introduced a game that uses implicit input
in order tomaximise the player’s engagement; Krol, Freytag, and Zander (2017) proposed
a similar conceptusing twoseparatedimensionsof implicit input, thusadditionally intro-
ducing an element of mental state balancing to the game. Entertainment overlaps with
art in Ramchurn, Martindale,Wilson, and Benford’s (2019) proposal for a neuroadaptive
film, switching between different narratives and sound designs based on a brain-based
measure of a viewer’s attention. Neuroadaptive technology has also been suggested to
help with the contemplation of art itself (Krol, Andreessen, Podgorska, Makarov, & Zan-
der, 2018), or to infer personal preferences with respect to cultural heritage items in or-
der to provide implicit tags or recommendations in real time (Karran, Fairclough, & Gil-
leade, 2015). We have also seen these developments in the context of neuroscientific re-
search (Lorenz, Hampshire, & Leech, 2017), where a neuroadaptive experimental design
has been used to intelligently present different audiovisual stimuli in order to identify
those stimuli that elicit the maximal response from the participant (Lorenz et al., 2016).
Even tasks that are normally doneusing explicitly communicated commands, such as the
control of a cursor or robotic arm,may be performed using neuroadaptive technology us-
ing implicit input elicited bymovements of the cursor or robotic arm (Zander et al., 2014;
Iturrate, Chavarriaga, Montesano, Minguez, &Millán, 2015).
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As such research illustrates andoften emphasises, neuroadaptivity allows technology
to support the user without placing any additional burden on them: the driver, for exam-
ple, is automatically supported in real time without being required to undertake any ex-
plicit actions that would distract them from their main task, and visitors of the museum
ormovie spectators are givenan individualised experience that they can focusonwithout
explicitly needing to indicate their preferences at every turn.

The unique benefits of neuroadaptive technology, however, should be contrasted
with its potential risks, which are of a similarly unique nature. The uniquely beneficial
fact that neuroadaptive technology allows communication to take place without addi-
tional effort on the user’s side, alsomeans that it can happen outside of the user’s aware-
ness altogether. Furthermore, it may not be possible for users to limit or otherwise con-
trol the scope of this communication. Brain activity—the data at the heart of all neuroad-
aptive technology—is liable to contain more information than what is needed as input
to a particular application. Additional information could be gathered accidentally, as e.g.
incidental findings indicative of epilepsy (Acharya, Vinitha Sree, Swapna, Martis, & Suri,
2013) may be found in the recorded data, or, bad actors may deliberately attempt to ob-
tain information outside of the bounds of necessity: imagine, for example, a neuroadap-
tivemovie streaming service that also records your responses to advertisements. Further-
more, by design, the reciprocal nature of the system adaptations will be in a position to
affect themental statesof theuser. Byand large, theywill likelybedesigned topromoteor
sustain specific desirablemental states, such as aworkload equilibrium or optimal learn-
ing engagement. A potential danger, however, lies in a mismatch between the system’s
target state andwhat states areacceptableorhealthy for theuser. Goal-orientedadaptive
mechanisms can be said to constitute the system’s own agenda (Fairclough, 2017), and
this agendamay ormay not correspond to that of the user. These issues are compounded
by the fact that implicit, not explicit, input is used: the usermay have no control over the
information that is being provided, andmay be unaware of the use that is beingmade of
the recorded data.

Where issues related to the safety and privacy of neural data, informed consent, and
transparency have been discussed recently in the context of brain-computer interfacing,
this has primarily been done in the context of physiological or neural data in general and
BCI-based explicit control in particular (e.g., Fairclough, 2014; Ienca & Haselager, 2016;
Yuste et al., 2017; Kellmeyer, 2018). Any discussion of neuroadaptive technology must
deal with these issues and the unique additional concerns they raise in the context of
implicit control.

Current Issues Addressed in this Dissertation

The highly interdisciplinary nature of the field of neuroadaptive technology has caused
relevant research to span different communities, and its rapid development has left it
without a shared terminology concerning a number of key developments. Part I therefore
presents aperspective onprevious research, highlightingdifferentways inwhich implicit
input has beenused and canbe used to enable neuroadaptive technology. In particular, it
focuses on one particularly powerful method that has been independently implemented
a number of times, but deserves our collective attention.
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Specifically, Chapter 1 first reviews existing passive BCI research and applications,
and categorises them based on a dimension that has an important bearing on how the
technology is used, or can potentially be used: interactivity, i.e., the technology’s abil-
ity to respond to input—implicit input, in this case. Themore interactive a technological
system is, themore responsive it is, themore autonomous, and thebetter capable of adap-
tation. The theoretical zero point on this scale is the method of mental state assessment
itself: a systemthathas theability todecodeaperson’smental states, butdoesnotuse the
obtained information for any interaction with that same person. Following this, the sug-
gested categories of increasing levels of interactivity are open-loop adaptation, closed-
loop adaptation, and finally automated adaptation, also known as intelligent adaptation
(Fairclough, 2017). An example of an open-loop adaptation is the correction of an error:
when an operator commits or perceives an error, this can be decoded from their brain
activity, and a system with direct access to the relevant implicit input could thus imme-
diately correct the perceived mistake. In the case of closed-loop adaptation, the actions
performedby the systemon the basis of implicit input feed back to the user and influence
the brain activity that triggered the adaptive action in the first place. This, for example,
is implemented in adaptive automation systems where an implicit measure of workload
is used to adjust automation levels in order to again influence the workload that is be-
ingmonitored. In the last category, neuroadaptive systems usemodels to represent their
user’s implicit input along any number of dimensions, and base their responses on the
information present in that model using goal-oriented control logic. This decouples the
control logic from immediate mental states, and grants the system more autonomy to
respond in different ways.

The interactivity perspective thus finally points towards systems that, given their au-
tonomy, can also autonomously gather implicit input from their users. This method can
make neuroadaptive technology particularly versatile. Chapter 2, therefore, considers
this method in more detail. It reviews a number of works that have used a specific se-
quence of steps in their research: the autonomous elicitation of a brain response, the sub-
sequent automated interpretation of this response, and finally, an instance of learning
on the basis of this decoded interpretation. This sequence has been used by different re-
searchers independently of each other, but, it is argued, gains particular relevance in the
largely unexplored context of implicit interaction. In order to collectively discuss some
of the technical and ethical issues that arise from this method, Chapter 2 first proposes a
definition that covers these previously disparate implementations, and suggests cognitive
probing as a label to refer to the method.

Another issue concerns someof the fundamentaldifficultiesofworkingwithmachine
learning methods applied to brain data. Even with a clear conceptual understanding of
what the technology is intended todo, caremust be taken to validate theneural processes
underlying the technology’s actual functioning. For example, to the extent that cognitive
probing is to be based on cortical processes taking place in the brain itself, it should be
ruled out that the classifier makes use of non-cortical activity such as eye blinks or other
muscular artefacts which do feature prominently in the EEG. This applies to all forms of
neuroadaptive technology. Therefore, Part II introduces two tools to help validate both
the methods we use and the experiments we conduct in the field of neuroadaptive tech-
nology.
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EEG is measured at the scalp, and although each electrode is at a spatially distinct
location, it picks up electrical activity from all parts of the brain simultaneously—that
is, all parts that generate activity at a sufficient scale for it to be measurable at the scalp.
Because of this, EEG has a poor spatial resolution, and a significant amount of process-
ing is required to interpret the recorded data. Unfortunately it is not possible to evaluate
the analyticalmethods applied to EEGdata against a ground truth, since no ground truth
is available for EEG data. Instead, researchers turn to simulations of EEG data, where a
ground truth canbemanually constructed, allowing the results of newlydevelopedmeth-
ods to be compared to a known factual reference. Chapter 3 therefore presents SEREEGA
(Simulating Event-Related EEG Activity), the first-of-its-kind free and open source tool-
boxdesigned to streamline and standardise the simulationof event-relatedEEGdata. Us-
ing an architecture and feature set that covers and extends the vastmajority of EEG simu-
lation methods employed by researchers today, SEREEGA provides a scripting language
and EEGLAB-based GUI (Delorme & Makeig, 2004) to simulate realistic EEG data, thus
providing a ground truth to evaluate and validate EEG analysis methods and pipelines.

Chapter 4, subsequently, uses SEREEGA to simulate datawith a known ground truth
in order to validate a source localisation method that visualises what areas of the brain
a classifier focuses on. This is important information. Where many researchers rely on
standardised experimental paradigms to elicit known cortical processes, this does not
guarantee that these cortical processes are also targeted by the classifier. Similarly, post
hoc analyses of recorded data to demonstrate that certain cortical processes were indeed
elicited, for example through ERP analyses, provide no proof that these same processes
contributed significantly to classification. In both cases, it is possible that the classifier
instead focused primarily on other, more distinctive brain activity, including artefactual
activity. Chapter 4 therefore introduces amethod that combines blind source separation
with the filter weights produced by different types of classifiers, allowing these weights
to be visualised in source space. The neurophysiologically uninterpretable filter weights
are first transformed into interpretable patterns (Haufe et al., 2014), and subsequently
distributed onto the sources in a virtual brain such that each brain area’s relative contri-
bution to the classifier can be visualised. These so-called relevance weights can thus be
used to analyse classifiers and inform statements as to which cortical processes, exactly,
contributed to classification. Aside fromthat, thismethodalsoopensupnewpossibilities
for classifiers to be used in neuroscientific research in general, opening up BCImethodol-
ogy to a wider audience.

Part III, finally, presents two validation studies based on the concepts fromPart I, sup-
ported by themethods from Part II.

The first study, presented in Chapter 5, shows that it is possible to use cognitive
probes to realise implicit cursor control. Participants observed a cursor on a screen that
was initiallymoving randomly. Eachmovement served as a cognitive probe, eliciting a re-
sponse fromtheobserver that couldbedecoded in real time fromtheir brain activity. This
response contained information pertaining to their interpretation of each cursor move-
ment, judging them as either appropriate or notwith respect to reaching a desired target.
Using this information, a usermodel could be generated that allowed the preferredmove-
ment directions to be inferred. Over time, the cursor was then steered towards the pre-
ferred target. Importantly, participants were unaware of having any influence over the
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cursor, even though it was their brain activity that enabled its goal-oriented behaviour.
An analysis of the classifier supported this conclusion. As such, this demonstrated how
even a quintessential case of explicit control—the movement of a cursor—can in fact be
done implicitly, using cognitive probing as described in Chapter 2.

The final chapter, Chapter 6, dives deeper into the just-mentioned implicit cursor
control paradigm in order to further investigate which cognitive processes contributed
to what extent to classification. A new experiment was designed to dissociate cognitive
processes related to visual perception (salience) on the one hand, and subjective value
interpretations (valence) on the other. As we will see, both these processes are indeed
present in the data, but separate classifiers can be constructed to focus primarily on one
or the other. The visualisation method presented in Chapter 4 allows us to localise the
cognitive activity related to these separate processes in different cortical areas. Using ap-
propriate classifier designs as confirmed by visualisation or othermethods, it is thus pos-
sible to access brain activity related to subjective valence processing.

This conclusion emphasises that neuroadaptive technology can elicit andhave access
to human cognition in a goal-oriented fashionwithout these humans being aware of hav-
ing any influence, or, indeed, of being influenced. As much as science fiction may have
inspired speculation as to the possibilities of neurotechnology, and as much as specula-
tion can remain useful to illustrate the possibilities—as in the example of the neuroadap-
tive book—previously fantastical speculations and possibilities have now largely left the
realm of science fiction, and their legal, societal, and ethical implications must be given
due consideration going forward.
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Abstract Passive brain–computer interfaces (passive BCI; pBCI) have been introduced
and formally defined almost a decade ago and have gained considerable attention since
then. In this chapter, we clarify some points of confusion and provide a perspective on
the past, present, and future of the field of passive BCI. This perspective concerns a key
aspect with regard to which various pBCI-based systems differ from each other: interac-
tivity. The more interactive a system is, the more responsive it is, the more autonomous,
and the better capable of adaptation. Along these lines, we identify and describe four rel-
evant categories of systemswith varying levels of interactivity: mental state assessment,
open-loop adaptation, closed-loop adaptation, and automated adaptation. We give ex-
amplesofpast andcurrent research for eachof these categories. The latter threeare collec-
tively introduced as neuroadaptive systems. This perspective and formal categorization
helps to highlight human–computer interaction aspects that are relevant for the design
of pBCI-based systems and points to possibilities for future research and development
into passive BCI, implicit interaction, and neuroadaptive technology.
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Passive Brain-Computer Interfaces

1.1 Introduction

In 1977, Jacques J. Vidal demonstrated the real-time detection of “brain events”, and of-
fered an example of how thesemight be used to control a system. Instead of using offline,
a posteriorimethods to investigate neuroelectric brain activity, Vidal suggested “treating
the experiment as a signal detectionproblem” (J. J. Vidal, 1977): with continuousaccess to
an electroencephalogram (EEG), a computer classified incoming EEG data as belonging
to one of four categories, based on previously learned (and continuously updated) deci-
sion strategies. As such, the system was able to recognize specific brain activity in real
time.

Although Vidal speculated upon a wide range of potential future applications of this
approach, it was in a clinical context that brain-computer interface (BCI) methodology
gained widespread attention. It was quickly realized that such direct BCIs could poten-
tiallyprovideameans forparalysedorotherwisemotor-impairedpeople to communicate
with the outside world without having to use their muscles (J. R. Wolpaw et al., 2002).
This resolve to help those people who stood to benefitmost from this technology led to a
strong focus on BCI for direct communication and control, and resulted, inter alia, in dif-
ferent mental speller devices (e.g., Birbaumer et al., 1999; Brouwer & van Erp, 2010; Far-
well&Donchin, 1988; Furdea et al., 2009; Treder et al., 2011) andbrain-activatedprosthe-
ses (e.g., Müller-Putz & Pfurtscheller, 2008; Soekadar et al., 2016; Wessberg et al., 2000;
J. R. Wolpaw & McFarland, 2008). For a long time, in fact, BCI research appeared to be
inseparably connected to these applications.

Improvementsmade over the decades havemade the fieldmore interdisciplinary and
BCI methodology more reliable. Of particular significance was the introduction of ma-
chine learning techniques at the start of the currentmillennium (e.g., Blankertz, Curio, &
Müller, 2002; Lotte et al., 2007; Ramoser et al., 2000). Previously, users of BCI systems
were trained to generate specificmachine-detectable features in their EEG, such as a spe-
cific frequencymodulation at a specific electrode site (Birbaumer et al., 1999). These days,
training has shifted to the machine, using supervised machine learning based on initial
recordings (Blankertz, Curio, & Müller, 2002). As pattern recognition by the machine
replaced operant conditioning of the user, the idea was rekindled that this methodology
couldalsobeapplied todetect and investigate spontaneous, automaticbrainactivity, and
that these detections could then be used as implicit input to a system (Rötting et al., 2009;
Zander et al., 2014). (We use “spontaneous” in its biological sense, meaning automatic,
instinctive, involuntary, and inattentive; see below for a further discussion.)

Early examples of this can be found in suggestions to use error-related potentials to
correct classification errors of traditional BCI systems (Blankertz, Schäfer, Dornhege, &
Curio, 2002; Ferrez & Millán, 2005, 2008). This was also suggested for response errors
(Parra, Spence, Gerson, & Sajda, 2003) and machine errors (Zander, Kothe, Jatzev, et al.,
2008) during human-computer interaction (HCI) in general. But it was only in 2008,
when BCI enjoyed increased popularity overall, that the approach gained widespread at-
tention. The use of BCI methodology for implicit input to benefit ongoing HCI was ex-
plicitly proposed as a worthwhile research endeavor by two research groups at the same
conference (CHI 2008, Florence, Italy), independently of each other (Cutrell &Tan, 2008;
Zander, Kothe, Jatzev, et al., 2008). Zander, Kothe, Welke, and Rötting (2008) subse-
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quently presented a framework formally separating this approach from traditional BCI
research, and proposed a name: passive BCI. The concept found acceptance also among
clinical BCI researchers in 2012 (J. R. Wolpaw&Wolpaw, 2012).

A passive BCI (Zander, Kothe, Welke, & Rötting, 2008; Zander & Kothe, 2011) system
derives its output from automatic, spontaneous brain activity, interpreted in the given
context (Zander& Jatzev, 2012). This interpreted activity is then used as implicit input to
support anongoing task (Röttinget al., 2009). Useof theword“passive”here results from
a user-centered perspective on HCI. It refers to the role of the end user of a system with
respect to the BCI: the underlying signals being automatic, spontaneous brain activity, it
is an inherent and defining aspect that the user exerts no effort to actively, explicitly, or
voluntarily elicit or modulate this activity. Instead, the user focuses on the task at hand
while a passive BCI system, in the background, monitors their brain activity for informa-
tive correlates of relevant cognitive or affective states.

Zander andKothe (2011) contrast passiveBCIwithactiveBCI systems,where thebrain
activity in question is consciously and purposefully modulated in order to control an ap-
plication (e.g. motor imagery BCIs; Pfurtscheller & Neuper, 2001), and with reactive BCI
systems, which rely on brain activity that is evoked by external stimulation but indirectly
modulated through voluntary attention (e.g. P300 amplitudes modulated by attention
shifts; Farwell & Donchin, 1988).

Care shouldbe takenwhenpresuming thatmental states can readilybecategorizedas
“spontaneous” versus “voluntary”, as required by these definitions of BCI systems. Simi-
larly, the activity ultimately used by any BCI systemmay not precisely fit one such a cate-
gory. Auserwho is aware of a passiveBCI systemmight be influencedby the expectations
they have of that system, and voluntarily commit attentional resources tomake sure that
the “spontaneous” activity takes place. A user might also attempt to consciously modu-
late this activity if results are not as expected. The otherway around, an active BCImight
rely on, or inadvertentlymake use of, brain activity that is not fully voluntarily controlled
by the user. Meditation, as an example, seems to present an ambiguous mixture of both:
it is the voluntary attempt to induce a state that is usually only achievedwhen contextual
factors align.

The active/ reactive/ passive distinction used here is a user-oriented one and focuses
on conscious intentions. Inmeditation, the intended purpose of the activity is relaxation
itself; not the communication of a state of relaxation for further processing. As a thought
experiment, we could ask whether the same user behavior and brain activity would be
observed if the user was not aware of their influence over a system. If the answer is “yes”,
thenwemay say that this behavior and brain activity represent “natural” human activity.
The implicit input gathered from it is then dissociated from its function as input. This is
taken as a core property of the technology discussed in this chapter: the underlying brain
activity arises fromnatural human activity that is not purposefullymodulated to cater to
the BCI system. Note, however, that by this measure, the categorization of a BCI system
as (re)active or passive ultimately depends on the individual user, and not on the system
itself.

Indeed, the example ofmeditation can in fact also be used for an active BCI—when a
state of relaxation is induced with the conscious intention of influencing a BCI system—
or for reactiveBCI,when, in addition, external stimuli areused to cueor achieve that state.
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In the last decade, the passive BCI approach (i.e., using natural human brain activity as
implicit input) has led to research into a range of different directions. Because of the gen-
eral applicability of this approach to awide variety of applications, a truly comprehensive
overview is beyond the scope, and not the intention, of this chapter. Instead, we would
like to discuss a trend that can be observed in recent work and thought related to passive
BCI: a trend toward increased interactivity between the human user and themachine.

“Interactivity” denotes “the ability of a computer to respond to a user’s input”
(“Interactivity”, 2006). In the following sections, we will describe four categories of sys-
tems that all take a neurophysiological signal as their input, but respond to it with vary-
ing degrees of complexity. Each presented category represents an increase in interactiv-
ity compared to the previous one. Selected examples from past and current research are
given to illustrate the different categories. A (partially) hypothetical example accompa-
nies us throughout the chapter, suggesting howa surgeon in the operating theatermight
behelpedby a system fromeach category. In sequence, the given examples thus illustrate
the abovementioned trend towards increased interactivity. The chapter endswith a brief
speculation of the future, and a summarizing conclusion.

1.2 Mental State Assessment

1.2.1 Introduction

BCI systems in general, by one definition, consist of three components: input, output,
and a translation algorithm that produces the latter based on the former (J. R. Wolpaw
et al., 2000). In this definition, input focuses on the measurement of particular aspects
of brain activity, which reflect or correlate to a specific mental state. The detection of
such amental state (inferred from themeasured activity) is then translated into a specific
computer action (output), for example, themovementof aprosthetic armor the selection
of a letter on a screen.

Passive BCIs are distinct with respect to the exact cause of the mental state that is
measured, requiring it to arise automatically as the result of a natural perception, activ-
ity, or thought, without the conscious intention of influencing the BCI system (see the
discussion in Section 1.1). Emotions, for example, are not usually induced voluntarily,
but experienced as the result of something we perceive, do, or think. Other examples in-
clude stress,workload, vigilance, arousal, and surprise. Themeasurement of suchmental
states can be helpful and informative by itself, however, without any computer actions
being initiated. Translation, in this case, merely quantifies themeasurements but causes
no further system changes that are reported back to the human who is being measured.
A subset of traditional BCImethodology can thus be used to obtain information concern-
ing a variety of mental states, that is, formental state assessment (Müller et al., 2008; van
Erp, Lotte, & Tangermann, 2012; Zander & Kothe, 2011). The resulting state information
can then be analyzed and studied further. The user is assumed to be behaving naturally,
as discussed in Section 1.1.

To perform such an analysis, that is to calibrate such a “state detector” or classifier, in-
dividual calibrationdataareusuallygathered inexperimental environmentswhereanop-
erator’s mental state can be carefully controlled and induced. Signal processing, feature
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extraction, and classifier calibration are then performed as per the general BCI approach,
in order to later be able to assess, from a new recording in a different environment, to
what extent the operator’s state reflected the experimentally induced one(s). If, for ex-
ample, a state of engagement can reliably be induced experimentally and neurophysio-
logical correlates of that state can robustly be detected in those recordings, then an index
can be generated that quantifies, for other recordings, to what extent these engagement-
related features were present. This quantification can be done for complete recordings
at once, but alsomoment bymoment, identifying, for example, at what times during the
recording the features were most or least pronounced.

Inbrief,mental state assessment takes a recordingof neurophysiological activity, and
interprets it by producing a quantitative measure of a givenmental state.

To give a hypothetical example of how this could be used, imagine a surgeon is pre-
sented with three different designs for a new teleoperated surgical robot. The goal is to
evaluate which of these designs will be most efficient under working conditions. The
surgeon performs the same operation using all three designs, while her brain activity is
registered. Features of this brain activity are later compared to different recordings of her
brain activity, collected during carefully controlled sessions of high and low workload.
Based on the gathered data, it can be determined which of the three designs evoked the
least workload-correlated brain activity. Furthermore, it may even be seen what phases
of the operation saw local increases or decreases in such activity.

1.2.2 Examples from the Literature
Mental state monitoring can be particularly useful where more traditional methods
have clear disadvantages. In neuroergonomics, “the study of brain and behavior at work”
(Parasuraman, 2003), theuseofBCI-basedmethods inorder toassess anoperator’swork-
load levels may replace traditional ergonomics methods where the operator would need
to be interrupted for data collection, for example, to fill out a workload-measuring ques-
tionnaire. Workload has been widely recognized as a fundamental issue in ergonomics
(Wickens, Hollands, Banbury, & Parasuraman, 2014), but a clash of definitions and con-
structs and intersubjective differences prevent a uniform and objective measurement
(Young, Brookhuis, Wickens, & Hancock, 2015). BCI methodology may here be able to
deliver a data-driven approach that circumvents (or complements) conceptual defini-
tions and focuses directly on the neurophysiological correlates of those conditions that
are to be measured. In case of workload, a consistent finding reflects a frontal-parietal
theta-alpha asymmetry in EEG activity, representing the interaction of the dorsolateral
prefrontal cortex and the intraparietal sulcus, which are also described as anterior and
posterior attentional systems in controlled attention tasks (Gerjets, Walter, Rosenstiel,
Bogdan, & Zander, 2014).

For example, Gevins and Smith (2003) used the Multi-Attribute Task Battery
(Comstock&Arnegard, 1992) to simulate controlledworking conditionsof threedifferent
load levels, and found reliable differences in frontal theta and parietal alpha band power
in the continuous EEG recordings. On this basis, they constructed a cognitive workload
index that could then be used to analyze later recordings. It performed in line with their
hypothesis on other traditional experimental workload tasks as well as duringmore nat-
ural HCI tasks.
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Using such precalibrated indices, mental state assessment can be used to, for exam-
ple, A/B test and compare alternative user interface designs or task conditions with re-
spect to the cognitive states they induce. Frey, Mühl, Lotte, and Hachet (2014) review
how a number of other constructs (attention/vigilance/fatigue, error recognition, emo-
tions, engagement/flow/immersion) can be used to evaluate user experience during HCI
tasks.

Care should be taken that the recorded reference data are ecologically valid and ex-
hibit the neurophysiological features that specifically correlate with the mental state of
interest, and not with other aspects of the recording’s context. For example, (Mühl, Je-
unet, & Lotte, 2014) recorded both high and low workload reference data in different
affective contexts, and showed that cross-context training improved the classifier’s ro-
bustness. See also section 1.4.2 for another approach to make the reference data robust
to unrelated influences through a careful selection of reference tasks. Gerjets et al. (2014)
and Brouwer, Zander, van Erp, Korteling, and Bronkhorst (2015) present an extended dis-
cussion of pitfalls and lessons learned inmental state assessment research.

Rather than recording reference data indicating extreme ends of the spectrum (e.g.
underload versus overload conditions), reference data can also be used as a baseline in-
dicating optimal conditions (e.g., balanced workload). Zander and Jatzev (2012) used a
measure of deviation from the baseline as undirected measure of suboptimal performance.
Such a detected divergence can then be analyzedmore closely to find out the underlying
factors. In their paradigm, a goal-oriented, gamified HCI task, the Kullback-Leibler di-
vergence of recorded features increased compared to a baseline measurement in phases
where participants felt they had lost control over the interaction. This loss of control could
perhaps constitute a mixture of workload (compensatory actions) and emotional states
(frustration), contributing to themeasured neurophysiological differences.

Aside from continuous, frequency-based measurements, features can also be ex-
tracted in the time domain of EEG recordings, looking at event-related potentials (ERPs).

Evoked responses to presented stimuli are said to reflect neuronal processing of those
stimuli, and the ERPs’ morphology may be modulated by affective and cognitive pro-
cesses (Luck, 2014). For example, an alternative workload measurement method is to
pose an oddball paradigm as a secondary task (e.g., to count the number of relatively rare
high-pitch tones among amonotonous sequence of low-pitch tones), but instruct partic-
ipants to focus attention primarily on another, primary task. The more cognitive load is
demanded by the primary task, the less attention can be invested in the secondary task.
This decreased attention is then reflected in an amplitude decrease of the P300 compo-
nent in the ERP following target stimuli in the oddball task (Kok, 2001).

Frey, Daniel, Castet, Hachet, and Lotte (2016) used both a continuous EEG-based
measure ofworkload, calibratedusing an experimentally controlled variant of the n-back
task (W. L. Kirchner, 1958), and a secondary oddball task to measure attention. They
found that both measures differ significantly across difficulty levels in a 3D wayfinding
game, albeit with different sensitivities.

ERP components may also reflect differences in higher-level cognitive processing.
This assumption is the basis of ERP-based guilty knowledge tests, where the goal of the ex-
periment is tofindoutwhetherornot theparticipantpossesses any information that they
wish to conceal. As such, guilty knowledge tests are a type of lie detector. Participants
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are shown a series of stimuli, some related to the concealed information (e.g., the used
weapon in a crime), others neutral (other weapons, random objects). Should the partici-
pant exhibit deviating responses to the related stimuli compared to theneutral ones, then
this could be taken as a clue that the participant does possess some information concern-
ing the case in question. Based on differences in their ERPs, Farwell and Donchin (1991)
deviseda systemthat couldaccuratelydetermine for87.5%ofparticipantswhether ornot
theyhad information concerningmockespionage scenarios that theparticipantswere ex-
posed to as part of the experiment. Ongoing developments in BCI andmachine learning
algorithms continue to be applied to improve performance in this field (e.g., Abootalebi,
Moradi, & Khalilzadeh, 2009).

Similar to workload, measures of a product or service’s quality, attractiveness, or po-
tential value to the user are traditionally gauged using questionnaires or interviews, and
there is difficulty with respect to conceptual definitions and objective values. In order
to elucidate consumer decisions, marketing researchers have turned to neuroscientific
and BCI-basedmethodology to investigate human consumption from a neurophysiolog-
ical perspective—neuromarketing (Lee, Broderick, & Chamberlain, 2007). For example,
Knutson, Rick,Wimmer, Prelec, andLoewenstein (2007) investigatedneural correlates of
two often opposing forces in purchase decisions: a product’s attractiveness, and its price.
In a functional magnetic resonance imaging study, they found discriminative activity in
separate cortical areas for these two product attributes. Based on features extracted from
the nucleus accumbens and themesial prefrontal cortex, they were subsequently able to
develop an index predicting purchase behavior as exhibited by participants during the
experiment.

1.2.3 Reflection
The examples of mental state assessment given here all use an initial recording of brain
activity as their basis, and then apply signal processing and classification or other predic-
tive techniques in order to obtain a continuous quantification reflecting mental states,
or changes in mental state. By using brain activity, these approaches exhibit a number
of relevant differences compared to other methods that attempt to do the same thing
(e.g. questionnaires, interviews, introspection, thinking aloud). Brain activity provides a
continuous, potentially unobtrusive source of data, and its recording does not interfere
with the state tobemeasured. It enables a functional, data-drivenapproach to individual,
subject-specific state assessment. This can provide a possible alternative to sometimes
competing and contradictory theory-driven approaches. It does, however require spe-
cial care to interpret the resulting data and validate the measures taken: in data-driven
approaches, correlations that are not neurophysiologically plausible may be found—for
example, co-varying neural responses to confounding variables may show up in cortical
areas unrelated to the state of interest, or models may be overfitted on the available data
(e.g., Babyak, 2004; Haufe et al., 2014). Another reason to use neurophysiological mea-
surements may be when the information of interest cannot be obtained otherwise, for
example, when a continuous recording and quantification is required, or when the hu-
man’s own indications may be biased.

Mental state monitoring is an essential element in (passive) BCI systems, but does
not constitute such a system in and of itself. As per the abovementioned definition of BCI
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systems, the third component—output—is missing: the measurement does not trigger
any actions, nor does it influence any system, beyond themeasurement itself. Rather, the
measurement itself is the goal of the use of the technology, as an additional instrument,
to be used for later post hoc analysis.

Section 1.3 will present examples of passive BCI systems that translate the measure-
ments into system actions in real-time. These actions simultaneously provide feedback
to the participants, adding a first element of interactivity to the system. We will also see
that this feedback has inherent advantages for the validation of the measured user state.

1.3 Open-Loop Adaptation

1.3.1 Introduction

HCI describes the interaction between one or more human users and a technical system
(Preece, Sharp, & Rogers, 2015). In a typical interaction cycle, an operator (user) gives
a command to a machine, which processes the command and gives corresponding feed-
back to the operator. “Feedback” here denotes information about an action returned to
the initial causing source of the action—that is, a response from the computer back to the
user. This can be either the effect of the action itself or a separate informative signal.

Even modern-day interaction techniques, for example, touch screens and virtual re-
ality controls, in essence still rely on the same principles as traditional techniques: in or-
der to provide input to the computer, users explicitly activate one element after another,
in accordancewith the computer’s logic (keyboard presses, mouse clicks, virtual buttons,
menus, sliders etc.). “Explicit” here reflects that the actionwas voluntarily executedwith
the conscious and sole intention of providing input to the computer.

Passive BCI can provide a fundamentally different, implicit input channel. “Implicit”
here is the antonym to explicit, and indicates that the input in question was generated
without the source’s voluntary intention of doing (merely) that (Schmidt, 2000; Rötting
et al., 2009; Zander, Krol, Birbaumer, & Gramann, 2016). Passive BCI can be embedded
into the human-computer interaction cycle by taking mental state assessments as im-
plicit input, processing this input accordingly, and providing corresponding feedback to
the user. This feedback creates interactivity with respect to the BCI: the computer now
has the ability to respond to the user’s implicit input.

In the simplest case, one interaction cycle (input—processing—feedback) can be
viewed in isolation, following a simple one-time stimulus-response logic. Whenever a
specific input is given to the machine, it performs one and the same action. The action
serves only to complywith the input as itwas given. This is referred to as open-loop adap-
tation.

Systems from this first category of adaptive applications apply mental state assess-
ment to obtain a measure of a mental state online, and respond to certain states with
specific preprogrammed actions in an open-loop fashion.

For our surgeon, the online detection of high phases of workload could for example
automatically trigger the system to switch on an indicator light. This communicates to
theothermembers of the surgical teamthat the surgeon is not tobedisturbedwith lower-
priority interruptions (Zander, Shetty, et al., 2017).
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1.3.2 Examples from the Literature

One mental state that has received particular attention in the context of general HCI, is
the perception of errors. Partially due to the artificial and limitednature of traditional inter-
action techniques (Suchman, 1987; Tufte, 1990), mistakes are made during ongoing HCI,
resulting in frustration, loss of productivity, or, in safety-critical environments, poten-
tially worse (Reason, 1990). Upon perceiving the feedback indicating the error, or even
already upon executing the erroneous action itself, the humanuser recognizes that amis-
take has been made. Such conscious error perception elicits a much-researched neuro-
electric response known as the error-related negativity (ERN; Gehring, Liu, Orr, & Carp,
2011). If a system could detect such a negativity in its human user, and link it to a spe-
cific action or feedback signal, it could automatically undo the apparently perceived to
be erroneous action, or even learn to prevent it in the future.

For example, Parra et al. (2003) report a 21.4% average reduction (albeit ranging from
-6 to +49%) in errors made by the combined human-machine system on a speeded re-
action task, which is the traditional experimental task to elicit response errors. Here, a
passive BCI system calibrated to detect an ERN after each human response informed a
decision to override the human input. Note that, as the -6% figure for one participant in-
dicates, this can lead to an increase in errors when the passive BCI itself makes mistakes.

Testing to what extent these findings would apply to more realistic HCI control sce-
narios, Iturrate, Chavarriaga, Montesano, Minguez, and Millán (2012) found similar de-
tectable responses to errors in a series of three experiments that represent essentially a
similar taskbutwithdifferentdegreesof realism: abstract cursor control, simulated robot
control, and actual robot control. Error-related responses have also been found in dif-
ferent HCI contexts and modalities, for example, based on auditory (Zander, Klippel, &
Scherer, 2011) and tactile (Lehne, Ihme, Brouwer, van Erp, & Zander, 2009) feedback.

Being reliable in various, realistic contexts, such responses can be used to undo or
otherwise correct for errorsduringHCI, as for example, Zander, Kothe, Jatzev, andGärtner
(2010) demonstrated using passive BCI error correction support in a gaming context.

ERN detection has also been used by Kreilinger, Neuper, and Müller-Putz (2012) to
inform the continuousmotion of a prosthetic arm. Blinking light-emitting diodes (LEDs)
would inform the user whether the arm would continue or stop moving within the up-
coming second. When a LED indicating continued movement elicited an error response
in the user, this could be interpreted as a passive input command to stop moving, and
vice versa.

The use of another type of cognitive state was proposed by Protzak, Ihme, and Zan-
der (2013) and further investigated Shishkin et al. (2016) to support gaze-based HCI. In
gaze-basedHCI, an eye tracker is used to follow theuser’s gaze,which can thus be used to
control, for example, a pointer on a screen. To select or activate an item, often a dwell time
is used: if the cursor remains for a certain amount of time on one and the same item (i.e.,
if the user looks at it for that long), it is activated. This can lead to a high number of false
activations, as not all gazes are intended for interaction. Both Protzak et al. (2013) and
Shishkin et al. (2016) compared brain activity following gaze fixations on an item under
two conditions: one where interaction was intended (gaze-based control was enabled),
and one where it was not (gaze-based control was disabled). They found significant am-
plitude differences in the ERP following control versus no-control fixations. Shishkin et
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al. applied a classifier trained on these differences online, in a gaze-controlled selection
task. Although their classification system achieved insufficient sensitivity values to fully
replace the “click” of a mouse, this may one day be possible. A computer that can reli-
ably detect its user’s intentions in such away could greatly reduce the amount of explicit
commands required from the user.

BCIhas alsobeenused ingamingenvironments to effect changes in theongoing inter-
action. For example, van de Laar, Gürkök, Bos, Poel, and Nijholt (2013) incorporated BCI
into an online role-playing game. Depending on parietal alpha band power, assumed to
reflect the player’s state of relaxation versus tension, the character they controlledwould
shape-shift into either an elf (relaxation) or a bear (tension). These character forms had
different functional abilities, thus affecting the user’s strategy in the game. Note that
in the cited case this was a form of active BCI, because the experimenters explicitly in-
structed the participants to control their state of mind in order to consciously shift be-
tween shapes. However, since the chosen features (parietal alpha) do naturally correlate
to relaxation, this could also be an exemplary implementation of open-loop adaptation
based on passive BCI. This highlights the issue discussed in Section 1.1: whether or not a
system is active or passive does not depend on the implementation itself, but ultimately
on the user’s behavior. For similar examples, see Ilstedt Hjelm and Browall (2000); Ilst-
edt Hjelm (2003); Zander and Krol (2017).

1.3.3 Reflection
Open-loop adaptive systems use a measurement of the user’s state as implicit input in
parallel to an ongoing (inter)action. These can be transient states such as error percep-
tion or interaction intent, which should then be carefully tied to the context that evoked
them, or more constant states such as moods or other psychophysical conditions, which
will then also have a more constant effect on the interaction. As such, we see that the
latter is used to implicitly control an application’s mode, whereas the former is used to
provide more timely implicit executive commands. The use of passive BCI methodology
in these interactive systems either supports the user by replacing commands that other-
wise needed to be provided explicitly, or provides an extra dimension of experience to the
interaction that would not have been possible using traditional input modalities.

An analysis of the effects of the BCI on the interaction can also serve as a validation
of the system. For example, a quantification of errors compensated or correct selections pro-
vides a clear measure of the efficacy of the system. Asmentioned in section 1.2.3, though,
care should still be taken that the implicit input underlying any performance improve-
ment is neurophysiologically plausible.

The examplesmentioned here use passive BCI for implicit human-to-computer com-
munication. The implicit input is processed immediately, corresponding actions are per-
formed, and the feedback given to the users completes the interaction cycle. This, how-
ever, is also the full extent of the interactivity at this point: the effects donot reachbeyond
the current interaction cycle, as there is no closed control loop influencing the next cycle.
Both the executive and mode switching actions represent open-loop control, where sin-
gle, independent state detections result in single, fixed actions from the computer. More
interactive applications exhibit closed-loop control, where the given feedback also influ-
ences the user, as we shall see next.
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1.4 Closed-Loop Adaptation

1.4.1 Introduction
In closed-loop systems, output is fed back to the systemas new input. In otherwords, the
generated output influences the next cycle. In case of an elementary human-machine
system based on passive BCI, the ultimate source of input is the human user’s mental
state. One method to implement a closed loop is thus to have the produced feedback
cause a change in the user state. By influencing the mental state that is measured, the
system influences its own next input.

One motivation for such an implementation may be to promote and sustain a de-
sirable psychological state; for example, an optimally supporting balance of factors, or
a state of flow (Csikszentmihalyi, 2008). The adaptive loop may, for example, be pro-
grammed to promote a state of positive engagement in order to improve performance.
This type of system couldmodify the demands of the task tomaximize the user’s motiva-
tion andenjoyment. When there is a clearly-definedandunambiguously operationalized
psychological state that is desirable, then the system can use its adaptive logic and feed-
back to manipulate the state of the user until the desired target state is reached.

This increases the interactivityof the system in the sense that it is nowable to respond
purposefully, as well as able to monitor the effect of each response. The given response
attempts to qualitatively influence the condition of the ongoing interaction.

Thus, closed-loop adaptive systems apply mental state assessment to obtain a mea-
sure of a mental state online, and respond to certain states—or changes in states—with
actions that influence that samemental state.

We can again turn to our earlier example ofworkload in the operating theater to illus-
trate this category of applications. When a system detects that the surgeon is currently
under high load, it can attempt to directly compensate for this by assuming certain tasks
on behalf of the surgeon. By relieving the surgeon from some of her tasks, the systempur-
posefully attempts to lower her load. Wewill see a similar example from the literature in
more detail, described next.

1.4.2 Examples from the Literature
Asmentioned in section 1.2.2, ameasure ofworkload is important in ergonomics research
in order to inform design decisions. An adaptive system, however, could contain a range
of options that would otherwise be decided upon by the designers, and switch between
them during online operation depending on current measures of workload. One such
option range is the level of automation: a machine can be operated entirely by explicit
commands fromtheoperator, or support thehumanoperator to variousdegrees, up to as-
suming full autonomy and leaving the user in a mere supervisory role (see Parasuraman,
Sheridan, & Wickens, 2000 for an overview and framework describing these options).
The purpose of automation is to reduce operator mental workload and alleviate fatigue
during sustained performance; however, use of automation is associated with negative
consequences such as the out-of-the-loop problems and decay of skilled performance
(Endsley & Kiris, 1995). Striking the right balance is important to thewell-being and per-
formance of the operator, but the appropriate level of automation varieswith fluctuating
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operator capacities and varying task demands. Therefore, adaptive automation (Byrne &
Parasuraman, 1996) attempts to match the level of allocation to the current capacity of
the operator, measured in real time.

Kohlmorgen et al. (2007) for example performedEEGmeasurements duringhighway
driving. Aside from controlling the vehicle, two additional tasks were given to the partic-
ipants that mimic human-car interaction (an auditory response task) as well contextual
distractorsduringdriving (amental calculation task anda listening comprehension task).
All these together definedhigh-workloadphases,whichwere compared to low-workload
phases, where no contextual distractors were present. A classifier calibrated to distin-
guish these phases was later applied in an online driving condition such that high work-
load detection resulted in the automatic temporary suspension of the auditory response
task. Themean performance on this response task significantly improved because of this
intervention.

Similar adaptive logic can be applied to intelligent tutoring systems designed to de-
liver educational material in a way that sustains the engagement of the student. For ex-
ample, the pacing of the learning process can be adjusted dynamically in order to sustain
motivation without inducing fatigue, frustration, or information overload. In particular,
working memory load is said to need careful management for an optimal learning expe-
rience (Cowan, 2014).

Gerjets et al. (2014) review theory and practice with respect to online working mem-
ory assessment, and present two studies in the context of adaptive learning environ-
ments. Special care was taken to select experimentally controllable calibration tasks. A
combination of two tasks was used, as these tasks both targeted the same cognitive re-
sources that were to be measured during realistic learning exercises, while at the same
time these tasks differed with respect to their demand on executive resources. As such,
Gerjets et al. attempted to develop a classifier that could detect workingmemory load in-
dependent of other task properties. Using this classifier, a classification accuracy of 73%
was achieved on single trials of word algebra tasks. Their aim is to apply this classifier in
an online adaptive environment, catering to current cognitive abilities of the student.

Such an online application has been presented by Yuksel et al. (2016): they used
functional near-infrared spectroscopy (fNIRS) first to differentiate between participants’
brain activity playing easy and hard piano pieces, and then to detect their cognitivework-
loadonlineduring the learningof anewpiece. The adaptive tutorfirst presentedonly one
line of musical notes, and added the next line only when workload levels indicated that
the previous step had been learned to a sufficient degree. Yuksel et al. report significant
increases in performance and learning speed using the fNIRS-based adaptive system as
compared to self-paced learning.

Ewing et al. (2016) applied the concept of closed-loop adaptation to a game, Tetris,
adjusting the game’s speed in order to maintain a level of optimal engagement. They
implemented different adaptive behaviors (i.e. more or less responsive), but found little
difference between them. They discuss the issue of finding an appropriate benchmark:
taking a manual condition as control, as they did, may provide an inherent difference
in user experience that is not related to the exact behavior of the closed-loop adaptive
system. A better control may be to compare this adaptive system to alternative methods
of adaptation, for example, preprogrammed, random, or “yoked” (responding to the user
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stateof another individual). Similar to the earlierdistinctionbetweenmode switches and
executive commands, the examples given above aim to achieve a constant, optimal state
in the user, but adaptive systems can also effectuate short-lived closed feedback loops in
order to achieve a one-time cognitive state.

E. A. Kirchner et al. (2013) suggest closed-loop implicit control of an alarm system,
making use of BCI methodology to assess whether or not the alarm has been perceived
and/or the user intends to act on it. Based on this information, the system could then
decide to re-sound the alarmwith increased saliency until it has been perceived. A state
of nonperception would thus trigger new feedback until a state of perception would be
observed. Kirchner et al. report accurate classification rates of perceived versus missed
alarms during a demanding robotic teleoperation scenario. In another study, they used
these asmeasures of current load, reversing this logic: nonperceptionof new instructions
indicated that the user was occupied with previous instructions. The new instructions
were then delayed, to avoid distractions and promote adequate levels of engagement and
performance (E. A. Kirchner et al., 2016).

1.4.3 Reflection

Direct access to a quantification of a certainmental state enables systems tomonitor and,
with appropriate feedback, influence this state also in a closed loop. This approach canbe
used to promote and sustain desirable mental states, or indeed to mitigate an undesired
state. The goal of this closed-loop control can be to achieve a certain equilibrium with
respect to the state of interest, or to push for a given threshold. In the former case, the
system’s potential influencemay need to be bidirectional, allowing for both changes that
encourage, and changes that alleviate the target state.

When considering what is a closed-loop system and what is not, special attention
must be given to the exact state that is targeted, which may be related to but different
from the state that is measured. For example, error perception, as a transient state in the
form of an error-related potential that lasts for less than a second, cannot necessarily be
used as such to define a closed-loop system. Thiswould be different, however, if this tran-
sientmental state canbe interpreted in the given context as, for example, being indicative
of a more persistent state of general dissatisfaction.

A closed feedback loop represents increased interactivity because the feedback in this
case does not merely function as an informative response to the user, but in fact pur-
posefully acts upon the user. The feedback intends to influence the user, as the user’s
commands intend to influence the system. Where in our earlier examples we saw im-
plicit human-to-computer communication, now we could speak of an implicit dialogue
between both agents, cooperatingmore closely in order to achieve common goals.

This cooperation as exemplified here is still limited by the amount of information
available to the system and the simplistic logic of the single loop—for example, the one-
dimensional measure of workload can only have a one-dimensional adaptation of au-
tomation levels. A next step up would need to tackle the question how systems can
achieve a more complex adaptive, cooperative behavior based on the limited informa-
tion passive BCI methodology can obtain at any single time. One such method will be
discussed next.
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1.5 Automated Adaptation

1.5.1 Introduction

Analysis of ongoing brain activity can give insight into momentary mental states, but by
itself, not into their likely causes, or the appropriate responses. In the abovementioned
adaptive systems, the context is controlled and specific enough to reasonably assume
that, for example, workload is caused by task demands, and increased automation will
lead to a reduction in measured load. The interactive functions however are limited to
these specific conditions.

Human-human interaction, the benchmark for natural communication and coopera-
tion, relies heavily on a sharedunderstandingof theworld, the situation, and the commu-
nicationpartner—asharedmodel of appropriatebehavior andhowthings are (G. Fischer,
2001). In this, however, HCI is heavily asymmetrical: the human user can potentially be
appraised of all details concerning the state of the computer, but hardly any such infor-
mation is available vice versa (Suchman, 1987). For a computer to understand its user, it
needs information and input that goes beyond the bare necessities for its operation. The
applications discussed in this chapter so far provide such information, but use it for pre-
programmed one-dimensional response logic—they do not “understand” the user, that
is, they build no model of higher, more abstract aspects of the user’s cognitive or affec-
tive behavior. A better-informed system has increased ability to respond appropriately
to the user; even to act on the given, known information before any new input is received.
This thus constitutes an additional increase in interactivity: nowalso the system, andnot
merely the human user, can autonomously decide to act.

In this final category of automated adaptive applications, the systems apply mental
state assessment alongside other methods of information gathering and build a model
to represent aspects of the user’s cognitive or affective responses. It is this automatically
generatedmodel, finally, that serves as abasis for the system’sownautonomousbehavior
and adaptations—not (merely) the system’s current input.

Our surgeon’s load may have been consistently detected to increase beyond sustain-
able levels after 1 h when using a specific teleoperated robot. Having learned this, a well-
informed system could call for an additional assistant ahead of time.

1.5.2 Examples from the Literature

Zander et al. (2014) and Zander et al. (2016) used single-trial detections of error-related
brain activity not to immediately correct perceivedmistakes, but to learn, over time,what
strategy the user followed to subjectively make the distinction between errors and non-
errors. To that end, the system exhibited different behaviors, and learned which behav-
iors evoked positive, and which evoked negative responses. These responses were gen-
erated in the medial prefrontal cortex, associated with a fundamental source of human
intelligence: predictive coding (Hawkins & Blakeslee, 2007). It thus built a model of the
user’s higher-level preferences with respect to the presented behaviors. Already during
this learning process, the system adapted to exhibit behavior most likely to be perceived
positively.
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Specifically, this approach was applied to two-dimensional cursor control. A cursor
on a computer screen initially moved randomly. Movements in some directions led to
positive responses,whilemovements inotherdirectionsevokednegative responses. Over
time, the system learned the pattern behind these responses, and as such, learnedwhere
the user wanted the cursor to go. The system could thus steer the cursor toward the in-
tended target.

Extending their earlier-mentioned experiments, Iturrate et al. (2015) demonstrated
a similar principle using a robotic arm. Participants observed its movements while their
error responseswere tracked in order to inform the armof appropriate and inappropriate
movements.

1.5.3 Reflection
In the two examples given in this section, rather than either having direct consequences
or not, mental state measurements were stored along with a description of the contexts
(here: computer actions) during which they were observed. As such, a model that corre-
lated user states with different contexts was created.

Theseexampleswereagain limited to their respectiveenvironments, but theprinciple
can be envisioned to apply in a broader sense. With a reliable measure of, for example,
satisfaction versus dissatisfaction (as e.g. in Zander et al., 2016), as well as an accurate
recordingof relevant context variables (Zander& Jatzev, 2012), a hypothetical ubiquitous
passive BCI system could generate such amodel for a large number of aspects in a user’s
daily andworking life. By collating contextual factorswithmeasures of the user’smental
state, the computer learns to understand this user in much the same way as we humans
learn from our own experiences. Subsequently, given a known context, the ubiquitous
computer could execute that action that has been observed to be most likely to satisfy
the user in that context.

Although the ultimate goal of this hypothetical system would be the same as of the
earlier-mentioned adaptive automation, that is, to promote and sustain a desirable state,
the methods by which this can be achieved are not set: the parameters of adaptation are
learned automatically by the system itself, on the basis of a continuously updatedmodel
of its user.

For a large part, it is the understanding (i.e., the models) that we have of our social
and physical context that allows us humans to behave appropriately in various contexts.
We have started to build these models as soon as we were born and continue to update
them as long as we are capable. For this, we use all information available to us, not just
the information that others have explicitly deemed relevant to us. By giving computers
access to more information and giving them the freedom to build their own models of
their users and the context, a formof artificial intelligencemaybe created thatmayfinally
be seen as an autonomous, interactive agent, just as we see ourselves.

Ina far-reaching, hypothetical caseof a learning, closed-loop, automatically adapting
system,we could imagine a systemprovidingwhatwewant beforewe can act upon those
desires ourselves. With this autonomously operating system originally having learned
from our own subjective responses to various actions and contexts, it may at some point
become unclear who was the ultimate initiator of the action, by whose authority the ac-
tion was executed, or who, in fact, “acted”. As the lines separating the two interactive
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agents, human andmachine, become blurred, merely the interaction itself remains.
Given also ethical deliberations with respect to, for example, data ownership, in-

formed consent, the potentially harmful influence of machine over man (the same tech-
nique could be used to promote an undesired state, resulting in the computer actively
working against the user), and outcome responsibility, it is prudent to aim to strike a bal-
ance between the two agents’ influence on each other. Users should always have access
to full information concerning the system’s models, processes, goals, and actions. Users
should also haveultimate control over, andownership of, data that are derived from their
physiology (Fairclough, 2014). From a cooperative perspective, the best balance may be
one where both agents get to optimally use their strengths while their weaknesses are
mitigated by the strengths of the other, while keeping these domains formally separate.

1.6 Summary and Conclusion

In this chapter we have discussed potential applications that build up on the ability
to perform real-time analyzes of neurophysiological data, first demonstrated as brain-
computer interfacingby Jacques J. Vidal. In 1973, envisioning future progress, Vidalwrote
that “mental decisions and reactions can be probed, in a dimension that both transcends
and complements overt behavior” (J. J. Vidal, 1973). This statement appears to accurately
capture themotivation of passive BCI research today, in its various forms of applications.
In this chapter, these were divided into four distinct categories, based on their level of
interactivity.

One category of applications, mental state assessment, uses the quantification of
state-specific brain activity as a measurement, for example to replace or support other
measurements (e.g. questionnaires, behavioral data). This approach can provide data
unobtrusively, can be individually calibrated, andmay be able to access information that
would otherwise remain hidden. An example from this category is the generation of a
workload index based on brain activity, in order to assess the amount of resources that
different instruments demand from the surgeon operating them.

A second category of applications, open-loop adaptation, uses the obtainedmeasure-
ments to inform an open-loop adaptation of the software. Using online state assessment,
these systems can respond in real time to the detection of certain states. Continuing the
above example, a warning light could switch on in an operating theater when it is de-
tected that the surgeon is currently experiencing high load.

In a further categoryof applications, closed-loopadaptation, the software adaptation
is designed with the explicit purpose to also effect a user adaptation, creating a closed
control loop. This provides the system with the ability to not merely detect, but also act
upon the detected mental states. To keep the surgeon’s workload at a sustainable level,
for example, certain systems and operations in the theatermay be adaptively automated.

Finally, a category of applications was described where the control logic of the sys-
tem exceeds pre-determined single-loop control: automated adaptation. The system is
given the autonomy to learn and adapt based on a larger amount of information, coupled
with a measure of the user’s mental state. This also grants the system the ability to act
autonomously for, or on behalf of, the user. For the surgeon, an additional assistant may
automatically be called as the systempredictsworkload levels thatwill exceed otherwise
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manageable levels.
The first category is neither BCI nor interactive, but serves as a basis for the three fol-

lowing categories. Their interactivity shows in their different abilities to respond to the
given input. SinceeffectivepassiveBCI systemsareunobtrusiveand inconspicuous, these
systems’ responses may be similarly hidden. It is for this reason that we refer to adapta-
tion, using this as a more generic term that includes traditional feedback (e.g., the move-
ment of a prosthetic limb) but also other ways to process the given input (e.g., updating
a user model) or act on the basis of previously-learned information. When adaptation is
ultimately based on neurophysiological measures, we refer to these systems collectively
as neuroadaptive systems (Zander et al., 2016).

The different adaptive behaviors are not mutually exclusive. An automated adapta-
tion systemmight, for example, predictwhat a user intends to do and execute that action
in advance, but then, in an open-loop fashion, undo the action when it is detected that
the prediction was in error.

The here-presented categorization emphasizes the observable path of passive BCI ap-
plications toward increased interactivity.

The investigation of truly interactive systems, in particular based on natural human
brain activity, can only be properly researched and developed in natural, real-world
interactive settings. The well-controlled experimental conditions will at some point no
longer be sufficient to make significant progress. Luckily, easily applicable, comfortable
electrodes with sufficient signal quality and stability are being developed and continue
to be improved (Zander, Lehne, et al., 2011; Mullen et al., 2015; Goverdovsky, Looney,
Kidmose, & Mandic, 2016; Zander, Andreessen, et al., 2017). Increased interest from
high-profile commercial ventures is currently providing an effective development
infrastructure and budget, at least for specific business interests—but the field as a
wholemay benefit, since the underlying issues are the same. Finally, when classifiers can
be constructed that are independent of the human users and applicable across contexts,
their universal usability will provide easy access to mental state assessment, boosting
its usage (Zander, 2012; Wei et al., 2015; Krol, Freytag, Fleck, Gramann, & Zander, 2016).
When these development reach maturity, real-world implementations of the adaptive
systems discussed here may seriously and dramatically alter the many human-system
interactions that dominate our everyday lives (McDowell et al., 2013).

This chapter described a trend toward increased interactivity in past and current pas-
sive BCI research and development. The history of HCI as a whole, too, can be seen in
light of increased interactivity. In early computer systems, input commands were writ-
ten beforehand and given to the system as complete programs. This either resulted in
the successful processing of the program, or, quite bluntly, it did not. It was only later
that humanswere given real-time control over the system, through, for example, immedi-
ate processing and interrupt options (Suchman, 1987). This provided the first interactive
human-computer experience, albeit with ultimate agency solely with the human user. A
next step toward interactivity thus appeared to be to give agency also to the computer—
allowing it to adapt itself and execute commands that the user did not explicitly ask for.
Passive BCI systems, discussed here in their various forms, can provide a source of infor-
mation tomake this computeragency in linewith theuser’s intentions. It canprovide this
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next step in human-computer interactivity, and, as the categorization used here intends
to show, may provide the ones after that as well, in the form of advanced neuroadaptive
technology.
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Abstract Objective: The interpretation of neurophysiological measurements has a
decades-long history, culminating in current real-time brain-computer interfacing (BCI)
applications for both patient and healthy populations. Over the course of this history,
one focus has been on the investigation of cortical responses to specific stimuli. Such re-
sponses can be informative with respect to the human user’s mental state at the time
of presentation. An ability to decode neurophysiological responses to stimuli in real
time becomes particularly powerful when combined with a simultaneous ability to au-
tonomously produce such stimuli. This allows a computer to gather stimulus-response
samples and iteratively producenewstimuli based on the information gathered frompre-
vious samples, thusacquiringmore, andmore specific, information. This informationcan
even be obtained without the explicit, voluntary involvement of the user. Approach: We
define cognitive andaffectiveprobing, referring toanapplicationof active learningwhere
repeated sampling is done by eliciting implicit brain responses. In this tutorial, we pro-
vide a definition of this method that unifies different past and current implementations
based on common aspects. We then discuss a number of aspects that differentiate var-
ious possible implementations of cognitive probing. Main results: We argue that a key
element is the user model, which serves as both information storage and basis for subse-
quent probes. Cognitive probing can be used to continuously and autonomously update
this model, refining the probes, and obtaining increasingly detailed or accurate informa-
tion from the resulting brain activity. In contrast to a number of potential advantages of
themethod, cognitive probingmay also pose a threat to informed consent, our privacy of
thought, andourability toassignresponsibility toactionsmediatedby thesystem. Signifi-
cance: This tutorialprovidesguidelines toboth implement, andcriticallydiscusspotential
ethical implications of, novel cognitive probing applications and research endeavours.
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2.1 Introduction

One essential skill required of disc jockeys (DJs) is the ability to “read the crowd”. In or-
der to maximise the audience’s enjoyment, a DJ may play different songs and gauge the
reaction they evoke (Gates, Subramanian, & Gutwin, 2006). Depending on this reaction,
the DJ decides whether or not to end the current song early, and what to play next. This
is an iterative process that continues to optimise with each played song, the goal being
maximum audience participation, or indeed, maximum audience happiness.

The feedback from the audience is essential input in this process. However, the audi-
ence members themselves are not necessarily aware of providing any—their responses
are mostly automatic, even reflexive. Hardly would one deliberate whether or not the
current chords are sufficiently engaging; rather, the rhythm and mood of the music will
simply induce the audiencemembers to express themselves in a certainway, and it is this
expression that the DJ will read and use as input.

In this tutorial, wewill discuss a situation analogous to the one above, in the context
of human-computer interaction (HCI): An adaptive process where a computer presents
something that automatically evokes a response from the user, which the computer can
then interpret and use for further processing. Wewill discuss themethods involved, how
they relate to past and current applications, and what aspects must be considered going
forward with this technology.

Let us first discuss what an “automatic” response may be in the context of HCI. In
traditional HCI, all input that we give to the computer is based on goal-oriented, explicit,
voluntary actions. By explicit communication, we mean any intentional action performed
for the purpose of communicating specific content. For example, to communicate infor-
mation to a computer, wemust actively type, say, click, move, swipe, or select things in a
corresponding fashion, or nothing will happen.

There are technologies that give a computer access to more information about the
user than what is explicitly communicated. In virtual reality, moving our arms and legs
provides explicit positional information to the computer, but, going beyond that, full-
bodymotion tracking can also be used to analyse thesemovements, or the resulting pos-
tures, for additional information that was not meant to be communicated (Kleinsmith,
Bianchi-Berthouze, & Steed, 2011). Your movements may reveal that you are happy or
sad, or perhaps drunk. Similarly, for example, facial recognition can be used to assess
emotions (Janssen et al., 2013), and passive brain-computer interfaces can analyse our
brain activity in order to supply implicit input to a computer (Zander & Kothe, 2011; Krol,
Andreessen, & Zander, 2018). By implicit communication, wemean that information is ac-
quired from output that was not intended to communicate that information. Here, we
focus on methods that target our brains—the primary seat of cognition and conscious
experience—as they are uniquely positioned to infer information about us in such away.

Real-time detection of mental states has been demonstrated as early as the 1970s
(J. J. Vidal, 1977), and since then, further research has shown that BCI methodology can
beused to detect a range of different patterns of brain activity, including some that reflect
specific cognitive and affective processes (e.g., Donchin, 1981; Hillyard & Anllo-Vento,
1998; Yeung & Sanfey, 2004). These mental processes occur naturally during our every-
day lives. So-called passive BCI systems (Zander & Kothe, 2011; Krol, Andreessen, & Zan-
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der, 2018) target such naturally-occurringmental states in order to provide implicit input
to a computer (Schmidt, 2000; Zander et al., 2014). In other words, passive BCI systems
rely on brain activity that was not intended by the user to provide information to those
systems, but is nonetheless used as such.

It shouldbenoted, however, that our current ability todiscerndifferentmental states,
and thus our ability to infer specific information from brain activity, is limited. While
research into “reading” mental states in novel ways continues to move forward (e.g.,
Haynes, 2011; Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016; Senden, Emmerling,
van Hoof, Frost, & Goebel, 2019), it is not currently possible to infer the propositional
content of thought (Haselager & Mecacci, 2018). Thus, in many cases, additional infor-
mation about the current situation is required in order to draw meaningful inferences
from measured brain activity (Makeig et al., 2009; Zander & Jatzev, 2012). For example,
when high workload is detected in amulti-tasking environment, additional information
is required tomake anoptimal decisiononwhich task to automate (Mühl et al., 2014; Krol
et al., 2016). Similarly, when error processing is detected, it is important to know where
that error originated (Falkenstein, Hoormann, Christ, &Hohnsbein, 2000;Mousavi & de
Sa, 2019;Wirth, Dockree, Harty, Lacey, & Arvaneh, 2019). Determining the best way for a
computer to sense, filter, and represent relevant situational aspects remains an openfield
of researchwithmanydifferent approaches (Perera, Zaslavsky, Christen,&Georgakopou-
los, 2014).

In our earlier analogy, if an observer to theDJ’s performance sees the crowd’s reaction
but cannot hear anddoes not knowwhatmusic is currently playing, theywill be none the
wiser, until they obtain this extra piece of information. TheDJ, on the other hand, doesn’t
only knowwhatmusic is playing—she is theonewho selected themusic in thefirst place!

Similar to aDJ, inHCI contextswhere a computerhas control over relevant situational
aspects aswell as access tomental statemeasurements, it can also actively induce an event
in order to assess the user’s brain response to it. This allows it to probe the human user. Hav-
ing a computer induce an event itself circumvents theneed for elaboratepost-hoc context
sensing. Rather thanwaiting for events to occurnaturally in order to learn the relationbe-
tween events and mental states, the computer can purposefully generate specific events
and gauge the user’s implicit response. Doing this in an iterative fashion allows the com-
puter to adaptively pursue a particular goal. As wewill see, these events can also be “hid-
den”, embedded in the ongoing interaction itself. Furthermore, considering that humans
are generally unable to stop their brains fromautomatically processing perceived stimuli,
the computer is effectively posing a question directly to the user’s brain, potentially by-
passing the user’s explicit faculties.

In essence, this cognitive probing canbe seenas a formof active learning (Settles, 2009).
Active learning is a concept in machine learning where a learner, rather than simply ac-
cepting samples as they come, has control over which samples it learns from. Cognitive
probing applies this concept to a computer learning from implicit responses to techno-
logical state changes, with the added notion that the learner in this case is not merely
responsible for its own learning, but also for the effect its sampling has on the human.
Inducingmental states is not a neutral act.

Learning itself canbe the sole goal of the computer. However, additional goalsmaybe
pursued as well: much like the DJ’s goal of maximum audience happiness, the computer,
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too,may attempt to find stimuli thatmaximise certain psychological states. As such, cog-
nitive probing can be a powerful tool to realise closed-loop neuroadaptive technology.
Neuroadaptive technology is technology that adapts itself based on implicit input of neu-
rophysiological origin (Zander&Krol et al., 2016). The amount of input obtained by such
technology, and the efficiency with which it is obtained, can be greatly increased using
cognitive probing. In particular, the technology can iteratively adapt itself to the user
based on implicit information gathered from probe-induced brain activity.

The use of passive BCIs for cognitive probing thus provides a potentially powerful
method for a computer to unobtrusively obtain information about its users. At the same
time, it also represents a potentially dangerous and psychologically invasivemethod con-
cerning mental privacy, and hence its application must be handled with due care and
transparency (Mecacci & Haselager, 2019b).

In this tutorial, we first introduce and explain a general, broad definition of this
method. Weprovide examples from the literature, pointing out that cognitive probing, as
defined here, has already been used for at least three decades in differentways and differ-
ent fields. With recent advances in neurophysiological sensing (Mullen et al., 2015; Zan-
der, Andreessen, et al., 2017) and neuroadaptive technology (Zander & Krol et al., 2016;
Lorenz et al., 2017), however, we believe it is prudent to now unify these methods previ-
ously considered disparate in a single framework, and to present a careful consideration
of the different aspects involved. Therefore, a further section discusses a list of aspects,
characteristics, and other considerations that are relevant to the use of cognitive probing
in different applications, and to society at large. We concludewith a speculative vision of
the future, highlighting possible research endeavours.

2.2 Cognitive Probing

At the basis of our proposed definition lies a single probe, where:

A cognitive (or affective) probe is a technological state change that is initiated
or manipulated by the same technology that uses it to learn from the user’s implicit,
situational, cognitive or affective brain response to it.

Cognitive probing or affective probing, then, is the repeated use of probes in order to
generate a model in which the learned information is registered.*

We use cognitive probing as the general term including both cognitive and affective
probing; the term affective probing can be used in cases focusing exclusively on affect
(Zander & Jatzev, 2009). Also note that the base definition refers to a single probe, i.e. a
single state change eliciting a single response. Technically, meaningful learning can be
done using a single probe: given sufficiently accurate tools, a single probe may be suffi-
cient to provide adequate information. However, the main potential, and main focus, of
the method lies in the adaptive, sequential use of multiple probes.

Wewill now discuss the definition’s constituent elements in more detail.

*The definitions given here for cognitive probe and cognitive probing supersede the earlier working defini-
tions presented in Krol and Zander (2018).
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Technological state change. A technological state change is any action undertaken by
a piece of technology. We use the term technology to collectively refer to any and all (con-
nected) technological elements inanypotential situation. Witha technology’s statebeing
its specific current configuration, a technological state change is thus any change in config-
uration that the technology undergoes.

In neurophysiological experiments, the presentation of cues, stimuli, or feedback
would be an example of a state change. In the example of an automated, neuroadaptive
DJ, it could be a song that is started.

Initiated ormanipulated. Most technological state changes that a user will notice are
user-generated, i.e. commanded by the user themselves, with the technology reacting to
explicit input. Non-user-generated events include e.g. notifications of incoming e-mails
or low battery. A cognitive probe refers to a state change whose occurrence, form, or tim-
ingwas at least partially produced by the technology itself, and not by the user. This thus
requires that the technology has some degree of control over its own state changes.

Technology can initiate a state change for the sole or primary purpose of obtaining
a response, i.e. to produce a probe for the probe’s sake. When a potentially informative
state change occurs for other purposes, user-generated or otherwise, the system canma-
nipulate it so as to serve as a probe, for example by adjusting its form or timing.

In the example started above, it is important that the neuroadaptive technology itself
somehow influences the song, as opposed to a human user simply pressing “play”. The
manipulation can take different forms: among other options, it could be that the user
requests music to be played in general, upon which the technology selects the song; it
could be that themusic has been pre-selected but the technology decideswhen to play it;
or it could be a process chain initiated entirely by the technology itself. In any case, the
technology does initiate ormanipulate the technological state in question, as opposed to
this being decided entirely by the human.

The user’s implicit, situational, cognitive or affective brain response. Cognitive
probing focuses on brain responses: brain activity (or a change in brain activity) that is
elicited as a function of specific events. To be a cognitive probe, a technological state
changemust thus in oneway or another elicit brain activity, or a change in ongoing brain
activity, which can in turn be detected by the technology.

“Cognitive or affective” is spelled out here to distinguish it from more elementary
brain activity such as the auditory brainstem response or steady-state visually evokedpo-
tentials. Since these responses do not inherently reflect cognitive or affective processing,
they cannot be used for cognitive probing.

Furthermore, we limit this definition to information taken from the brain response
thatwas not intended to be communicated to the technology—cognitive probing targets
implicit human-computer communication.

“Situational”means the implicit brain response is automatically registered alongside
parameters of the current situation. An ability to interpret ongoing brain activity taken
in and of itself results merely in a stream of mental state assessments. In order to learn
something fromthesemental states, theymust be combinedwith additional information
about the situation in which these mental states occurred. Cognitive probes ensure that
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Probe Situational
Parameters

Brain
Response

User Model

Technological Goal

Figure 2.1: Adiagrammatic overviewof the cognitive probingmechanism. Basedonavailable
information, the technology initiates or manipulates a state change—a probe. This change
elicits abrain response. Togetherwithparametersdescribing theprobeaswell as, optionally,
additional parameters describing the situation in which the user’s response happened, the
technology interprets this response and updates the model, increasing the accuracy of the
information available to it for the next goal-oriented probe. At a minimum, the situation is
described by the probe itself, but any other relevant parameters can be included.

at least one piece of situational information is available: the probe itself.
Further situational aspects canof coursebe included, dependenton theaccuracywith

which they can be sensed and/or represented (Perera et al., 2014).
By co-registering the interpreted brain responseswith all related situational informa-

tion, a user model is formed. Over time, such a model will come to reflect regularities in
the users’ responses and thus allow aspects of higher cognition functions to be inferred,
as e.g. in Zander & Krol et al. (2016).

Continuing our example, themusic that starts playingwill evoke a response from the
human listener—for example, they may like or dislike the song, it may distract them or
evoke a pleasantmemory. The listener does not intentionally produce this response; it is
simply a result of them being human, and hearing the song. The response is reflected in
their brain activity.

The same technology that uses it to learn. The brain response induced by the probe is
detected and registered in a user model alongside additional available information. The
purpose of this is to learn: each response is decoded to provide at least one bit of informa-
tion in order to reduce previous uncertainty or to adjust existing knowledge. This knowl-
edge is represented in themodel.

Importantly, the learner is the same technological entity that produced the probe.
Combining the technological ability to interpret ongoing brain activity with the ability
of that same technology to actively elicit this brain activity is what allows probes to be
purposefully generated to fulfil a specific goal. An independent, external event, even if
the technology interprets it and learns from it as described above, is not a cognitive probe
because the technology had no influence over it.

Finishing the example, the automated, neuroadaptiveDJmeasures and interprets the
listener’s implicit brain response to the song, and learns that they do or do not like this
music. It uses this information to select the next song accordingly.
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Summary. Figure 2.1 shows a diagrammatic overview of the cognitive probing mecha-
nism. A probe elicits a certain response in the user’s brain. The neuroadaptive technol-
ogy measures this response, along with relevant parameters of the state change, and co-
registers these pieces of information alongside one another in a user model. The combi-
nation of all pieces of information in the model allows inferences to be drawn. Based on
the user model and the current goal of the technology, the next probe is initiated. This
again elicits a response, leading to an update of the user model.

To further delineate the method of cognitive probing, we mention a number of
counter-examples in the discussion section of applications that are closely related to cog-
nitive probing, but fall outside of this definition. For now, we will first turn to a number
of past and present applications and experiments that do fit this definition, to illustrate
the method.

2.3 Literature Review

The proposed definition of cognitive and affective probing is deliberately generic, and
does not specify, for example, for what purpose the learned information is to be used, or
how inferences are to be made. Therefore, we can identify a number of past and present
methods that fit this definition. Although these methods have been treated disparately
before, we can see that the same terminology applies.

We may say that the history of cognitive probing starts with the event-related poten-
tial (ERP) technique (Luck, 2014). This was the first of a number of techniques that al-
lowed researchers to associate the brain’s neuroelectric responses with specific events.
Initially, the ERP technique was used both to elucidate the neural pathways involved in
sensory processing (e.g., Cobb & Dawson, 1960), and as a diagnostic tool to assess the
(mal)functioning of the involved structures and processes (e.g., Chiappa, 1997). Later, it
was demonstrated that ERPs also reflect aspects of cognitive processing (W. G.Walter et
al., 1964).

The ERP technique has been used in various applications and research endeavours.
For example, C. Fischer et al. (1999) used a mismatch negativity paradigm (Näätänen,
Paavilainen, Rinne, & Alho, 2007) to assess levels of consciousness in comatose patients,
by presenting them with sentences that did or did not make semantic sense. Farwell
and Donchin (1991), based on earlier work by Rosenfeld et al. (1988), presented partici-
pants with pictures of objects that did or did not belong to a crime scene in order to infer
whether or not they had incriminating knowledge of it. Most ERP studies, however, in-
cluding these two examples, do not employ automatic learning by the same computer
that produces the stimuli, meaning they do not employ cognitive probing as such. In-
stead, the average ERPs are examined post hoc by the researchers. A key element that
was missing was the ability to detect and analyse brain responses in real time. This had
been demonstrated first in the 1970s (J. J. Vidal, 1977), but resurfaced more prominently
in the 2000s with the advent of machine learning in EEG research (Ramoser et al., 2000;
Blankertz, Curio, &Müller, 2002; Lotte et al., 2007).

This development is clearly seen in reactive BCI applications (Zander & Kothe, 2011),
where ERPs are elicited and used to assess correlates of human attention to allow users
to voluntarily control applications. In particular, mental spellers highlight or present dif-
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ferent letters of the alphabet on a display, in order to learn which letter was attended
to (Farwell & Donchin, 1988; Treder et al., 2011). Each such presentation results in an
ERP. Because ERP responses to attended letters are known to be different from those to
unattended ones, the system can detect this in real time and learn which letter the user
intended to write. These highlights and presentations are examples of cognitive probes:
they are solely initiated for the purpose of learning which letter the user wishes to com-
municate. Later developments added adaptive probing techniques where the sequence
of highlights was adapted in real time to the available information (e.g., Lenhardt, Kaper,
& Ritter, 2008; Jin et al., 2011), or where intermediate feedback elicited additional brain
responses (Dal Seno, Matteucci, & Mainardi, 2010). Finally, Mladenovic et al. (2019)
present an elaborate implementation of a mental speller that combines multiple adap-
tive strategies using a single framework based on active inference. Here, a prominent
user model is used to generate the system’s actions, the user’s brain responses to which
in turn are used to update that user model. This is a clear example of cognitive probing
in the current sense of the term.

A similar development from independent analyses of brain activity to cognitive prob-
ing as described here happened in the field of neuroergonomics (Parasuraman, 2003),
where ERPshave beenused for, amongother things,workloaddetection. It has longbeen
shown that certain features of brain responses to rare sound events seemingly reflect the
availability of attentional resources (Sirevaag, Kramer, Coles, & Donchin, 1989). This led
to the development of the secondary oddball task, where sounds are played repeatedly
and intermixed with rare deviant sounds. Real-time evaluation of the brain responses to
these tones thenallowreal-time inferences tobemadewith respect toavailable resources,
i.e., workload. In such a context, the tones are thus cognitive probes, allowing the same
technology that produces them to learn about the cognitive state of the user. This has
been used in online, closed-loop contexts, where e.g. additional tasks are automated or
postponed when high workload is detected in order to alleviate the load (Kohlmorgen
et al., 2007). Secondary oddball tasks have also been shown to work in demanding real-
world scenarios (Dehais et al., 2018).

In the previous examples, the state changes making up the probes were induced for
the sole purpose of learning. However, this must not necessarily be the case: probes can
also be embedded in state changes that are produced for other reasons. One example of
this is the presentation of feedback in such a way as to elicit an error-related potential
when the presented information is false or undesired (e.g. Dal Seno et al., 2010). Pre-
sentation of feedback is obviously an inherent part of any interactive system, its primary
purpose being to inform the user. Its presentation can, however, be controlled by the
computer allowing it to be used as a cognitive probe.

Similarly, E. A. Kirchner et al. (2016) effectively embedded a type of secondary odd-
ball task in anotherwisenatural human-computer interaction. During amulti-robot con-
trol task, participants had topay attention to task-relevantmessages thatwere presented
during the interaction. The appearance of these messages evoked brain responses with
properties comparable to those evoked by a dedicated secondary oddball paradigm. This
allowed the computer to deduce an index of task engagement from these responses, and
adapt the presentation of themessages-cum-probes accordingly. This shows that probes
can be effectively hidden in natural aspects of an already-ongoing interaction.
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It is even possible to have probes be the primary basis of the interaction. Zander et
al. (2014, 2016) aswell as Iturrate et al. (2015) demonstrated applicationswhere this was
the case: the guidance of a cursor or a robotic arm, respectively. Each movement of the
cursor or arm elicited an ERP that could be automatically interpreted as reflecting the ap-
propriateness of that movement with respect to reaching a target position. The initial
movements occurred randomly. Based on the information gathered from the observer’s
brain response following each movement, however, a dynamic user model could be gen-
erated reflecting which behaviours were perceived positively, and which were perceived
negatively. Based on this model, themovements could be steered into the apparently de-
sired direction, towards the target. While Iturrate et al. (2015) suggest this to be used for
voluntary prosthetic control, Zander &Krol et al. (2016) stress that the elicited responses
themselves appear to be involuntary. In fact, their participants were unaware of having
any influence over the cursor. As such, this method allowed the cursor to be controlled
entirely implicitly.

This latter example presents a sliding scale with respect to the primary purpose of
each cursor movement. In a process later also described by Hincks et al. (2017), the stim-
uli were initially selected at random, with no other purpose than to populate the user
model. As information was gathered and a user model was formed, the stimuli became
increasingly part of the task completion (target reaching)mechanismwhile still allowing
for new information to be learned.

A similar concept has been developed in the context of neuroscientific experimen-
tation. Whereas traditional experiments are generally informed by specific hypotheses
and employ correspondingly narrow experimental designs, a neuroadaptive approach to
hypothesis testing would allow an experimental computer to present different stimuli
or conditions in search for a specific neurophysiological response pattern (Lorenz et al.,
2017). For example, in order to find which stimuli optimally activated select cortical re-
gions, Lorenz et al. (2016) used functional magnetic resonance imaging (fMRI) to assess
the participants’ responses to a range of audiovisual stimuli reflecting different physical
properties. Rather than presenting all stimuli in order to analyse the different responses
post hoc, responses were assessed in real time. Subsequent stimuli were automatically
selected based on previously gathered responses, with the aim to learn the parameters
that elicit a maximum response. This closed-loop, neuroadaptive experimental design
thus employs cognitive probes in order to learn how the participant responds to certain
stimuli. Once theoptimal stimulihavebeen found, theexperiment cancontinue togather
data for further investigation.

Afinal example concerns the generationof a dynamicusermodel reflectinguser inter-
ests (Wenzel, Bogojeski,&Blankertz, 2017). Here, thebrain responseswerenot elicitedby
the presentation of the stimuli directly, but by the participant’s eye fixation on them: the
stimuli were already visible, the participants’ gaze was tracked, and brain activity was
analysed relative to the eyes fixating on each stimulus using so-called fixation-related
potentials (FRPs; Dimigen, Sommer, Hohlfeld, Jacobs, & Kliegl, 2011). The stimuli were
words of different semantic categories. By combining fixation information and an inter-
pretation of the FRPs, the authors were able to assess which words were relevant and
which were not, and ultimately, to infer which category of words the participant was in-
terested in. This illustrates that the brain response to a specific probe (presenting the
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words) need not be immediate, but can be delayed. In this case, it was delayed until the
participant fixated on it. This also illustrates the potential relevance of additional con-
text information. Wenzel et al. combined the brain response with information about the
participant’s gaze in order to infer the semantic category of current interest.

Aside from fMRI and the EEG-based ERP technique, which featured heavily in this
section, frequency-based measures can of course also be used (e.g., Ewing et al., 2016;
Mousavi, Koerner, Zhang, Noh, & de Sa, 2017), as well as other modalities, such as func-
tional near-infrared spectroscopy (fNIRS) (e.g., Afergan et al., 2014; Yuksel et al., 2016).

In these examples from different areas of research, we see a convergence towards the
idea of using real-time, single-trial analyses in an automated, closed-loop fashion in or-
der to learn something about the human user or participant—i.e., towards the idea of
cognitive probing presented here. While clearly sharing common methodologies, the
used terminology is still disparate: authors referred to their methods, or parts thereof,
as “probing” (Kane, Butler, & Simpson, 2000; Zander & Krol et al., 2016), “brain read-
ing” or “embedded brain reading” (E. A. Kirchner, Fairclough, & Kirchner, 2019), “explo-
ration” (Iturrate et al., 2015), “active sampling” (Lorenz et al., 2017), “active inference”
(Mladenovic et al., 2019), or implied the method to be part of an “entropic BCI” (Hincks
et al., 2017), of “adaptive” systems (Schultheis & Jameson, 2004; Yuksel et al., 2016), or
of a system using “brainput” (Solovey et al., 2012). This is part of the reasonwhywe now
present a unified framework and terminology.

In the next section, we discuss a number of aspects of cognitive probing that deter-
mine how implementationsmay differ, and aspects that are important to consider when
developing systems that employ this method. In some cases, these overlap with general
active learning aspects and guidelines; in others, cognitive probingmust be treated sepa-
rately due to its utilisation of brain data gathered directly from human beings.

2.4 Aspects and Considerations

Cognitive probing can be applied in different ways and across different contexts, to suit
different purposes. This section lists a number of ways in which these differences can
be realised. This serves both to illustrate concepts, techniques, and possibilities of the
cognitive probing method, and as a list of considerations and trade-offs for researchers
and developers.

Furthermore, the cognitive probing method raises a variety of ethical issues that we
will briefly introduce and discuss in this section. The basic concern centres around the
implications of probing someone’s brain processes in order to gather cognitive or affec-
tive information about that person. A responsible use of such technology requires, at the
very least, reflections on the topics of privacy and consent, and responsibility for actions
mediated by the technology.

2.4.1 Learning Strategies

Probes aredesigned inorder to obtain information. Twocentral questions are thus: What
information is to be obtained, and how is this best achieved?
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Ultimately, the information that can be obtained of course depends on the cognitive
and affective states that can be detected and the reliability of these assessments. Here,
traditionalneuroscientific considerationsapply. See e.g. Brouweret al. (2015) andGerjets
et al. (2014) for recommendations.

Therearedifferentpossible strategies to learn fromcumulative samplesand tochoose
subsequent probes. In the previous section, Lorenz et al. (2016) and Mladenovic et al.
(2019) used Bayesian inference and optimisation (Snoek, Larochelle, & Adams, 2012),
whereas Iturrate et al. (2015) used a form of reinforcement learning (Sutton & Barto,
1998).

With its abstract similarity to active learning, the cognitive probing method can
utilise many of the so-called query strategies of active learning (Settles, 2009). As illus-
trated in Figure 2.1, the system can select a specific state change based on the knowledge
currently available in its model, in order to update that model (i.e., to fulfil its goal of
learning). It can thus use available information in order to determine which change will
be initiated, and to what end.

One strategy to that effect that Settles (2009) mentions is uncertainty sampling: the
system can initiate changes along those dimensions about which it has the least knowl-
edge. For example, if the system has no information pertaining to a particular condition,
it could deliberately produce this condition in order to probe the user’s response to it.

Other strategies can similarly be applied, notably expectedmodel change (obtaining in-
formation that wouldmost change themodel) and expected error reduction (to reduce the
error in the model, or in the system’s behaviour). A system may initialise using random
variables and based on these initial samples, move to specific strategies to findmore suit-
able values (Hincks et al., 2017).

2.4.2 Repeating Probes

Most likely, it will be necessary to probe multiple times in order to draw reliable conclu-
sions. Given imperfect measurement or inference methods, a trade-off needs to be con-
sidered between the number of probes and the accuracy of the gathered information.

With respect to obtaining a specific piece of information, a sequence of probes can
be presented in different ways. One way is to present a precisely defined state change a
pre-determined number of times (e.g., once, or ten times). The optimal number of rep-
etitions has, for example, been investigated for P300 spellers (e.g., Jin et al., 2011). An-
other method is to use a confidence criterion, where the state change is repeated until a
certain level of confidence has been reached (i.e., the error reduction strategy combined
with dynamic stopping; e.g., Schreuder et al., 2013). Finally, rather than repeating the
same probe, the probe itself could be dynamically changed during the sequence, adap-
tively homing in on increasingly specific information of interest as e.g. in Lorenz et al.
(2017).

2.4.3 The Roles of Time

Time is relevant in a number of ways. For one, time itself may be one of the relevant situ-
ational factors to be included in amodel: the absolute time of day (e.g., to learn patterns
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that are different in the evening as compared to the morning), or the time relative to a
previous event.

Also the time needed for the system to measure and process the brain response can
have practical importance. Sometimes the measurement and data analysis might take
longer than what is useful for a particularly time-critical application.

Furthermore, the duration of a probe’s effect needs to be considered. In the examples
given in this paper so far, all relevant brain responses to the probe were near-immediate.
However, this need not always be the case. Depending on the application, a distinction
can be made between up to four time points or periods: the time that the probe is gen-
erated (i.e., the technological state is changed); the time that the probe is perceived; the
period of time during which the probe’s influence remains apparent (i.e., during which
relevant brain responses can be gathered); and the period of time during which the gath-
ered information remains valid.

The first two time points are usually the same, but not necessarily. It is possible for a
probe to be noticed only after it has been produced, as for example in the fixation-related
studymentionedabove (Wenzel et al., 2017). Itmayalsobepossible for a state changenot
to be consciously noticed at all, while still having an effect (Negri, Gamberini, & Cutini,
2014). The third point covers a time period that varies depending on factors such as ha-
bituation, and the time it takes for ameaningful response to arise—see also section 2.4.7
for the difference between impulsive and reflective responses. The final point concerns
the “half-life”, so to say, of any gathered information. Is it generally valid and can it re-
main in the model indefinitely, or may the user’s responses change over time such that
the learned information becomes obsolete? In the latter case, the probes may need to be
repeated at certain intervals.

2.4.4 A Probe’s Purpose

The presented definition requires that probing must be done in order to learn. This does
notmean, however, that learning is necessarily the only objective: the systemmay simul-
taneously have other goals.

Figure 2.1 illustrates three effects of a probe: its effect on the environment (at a min-
imum, this is simply the occurrence of the probe itself), its effect on the brain (the brain
response elicited by the probe), and ultimately, the adjustment of themodel. The goal of
“learning” refers to this last effect. However, cognitive probes can be selected to simul-
taneously fulfil further strategic goals. In particular the second consequence, the user’s
response, can be part of the goal-driven behavioural strategy of the system.

The system may aim to induce or sustain desirable psychophysiological user states.
If certain probes have been learned to lead to positive responses, the systemmay aim to
induce or sustain the user’s positive state by repeating such probes. This was the case
for the implicit cursor control experiment (Zander & Krol et al., 2016): each probe served
both to further the system’s knowledge of the preferred direction, and to steer the cursor
into that direction.

Note that goals neednot remain static over time: for example, an initial phase ofmere
information-gathering can be followed by different goals as decided based on the gath-
ered information, or goals may change based on changing situational aspects.
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Furthermore, even when learning is the main objective to employ cognitive probing
itself, the purpose for which information needs to be learned is left entirely open.

In other words, it can be said that neuroadaptive systems have their own agenda
(Fairclough, 2017). An important factor to consider is whether or not, or to what extent,
this agenda is in line with the user’s own goals, discussed in more detail further below.

2.4.5 Interference and Distraction
The fact that cognitive probes are intended to elicit a response means that they must in-
fluence the user in one way or another. As mentioned above, this influence can be used
by the system for a higher goal, such as the promotion of a desiredmental state. At other
times, this influence may be an unwanted side-effect. The effects may be distracting or
otherwise bothersome, in particular when the system does not yet have a sufficiently ac-
curate model, or when probes are selected using a seemingly incomprehensible strategy.
Potentially, this could even influence their mental state to a point of no longer being use-
ful as implicit input.

In utilising cognitive probes, it must be considered to what degree these probes may
interfere with the user’s natural or intended behaviour. An important factor here is how
well the probes can be embedded into the natural context.

For example, the secondary oddball tasks mentioned earlier used clearly perceptible,
overt auditoryprobes (Schultheis& Jameson, 2004; Kohlmorgenetal., 2007). Thesewere
required in order to learn of the user’s attentional resources, but were otherwise irrele-
vant to the user. These are inherently distracting stimuli (Parmentier, Elsley, Andrés, &
Barceló, 2011). On the other hand, the example of task-relevant messages that were co-
opted as probes (E. A. Kirchner et al., 2016) shows that they may have been distracting,
butnot because theywereprobes—their use asprobesdidnot change their nature aspart
of the interaction. The messages themselves were clearly perceptible, but their function
as probewas not noticeable at all. This can also change over time. During the cursor and
robot control examples (Zander&Krol et al., 2016; Iturrate et al., 2015), the initial actions
were purely information-gathering probes, but later actions, based on an increasingly ac-
curate model, were increasingly compatible with the user’s goals, and their probing na-
ture became secondary to the goal of steering the cursor to the target.

Probes that are embedded in naturally-occurring events are less distracting, butmust
wait until those events happen. Also note that, the better probes are “hidden”, the more
care must be taken not to violate the user’s privacy, discussed in section 2.4.9. Alterna-
tively, a user can be exposed to a calibration phase of clearly perceivable and attended,
but seemingly unproductive probes until themodel is sufficiently accurate for the probes
tobehelpful. In other cases, of course, e.g. where theprocess alwayshas the full attention
of the user, these deliberations may not apply.

2.4.6 RepresentingMultiple Dimensions
Theoretically, the model that contains the gathered information can be of any level of
complexity or dimensionality. Not only can any number of probe-response events be
taken into account, any number of additional context measurements can be registered
along with that response.
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Most applications can be broken down into discrete dimensions: a light, for example,
may be determined by its hue and its intensity. Cognitive probes could be used to gather
a person’s current preference with respect to these two dimensions. However, such pref-
erences may be dependent on further dimensions: the time of day, their current activity
in the room,whether or not there are guests... In this sense, the full complexity of the real
world has an indeterminate number of dimensions.

Each probe can be seen as a single point in a large state space covering all dimensions
in themodel. Section 2.4.1 already covered some strategies to explore this space. An addi-
tional consideration is the desired accuracy on each individual dimension. Disentangling
the contributions of individual dimensionswill require a large amount of probes, and un-
til such time, nomeaningful inferences can be drawn.

Alternatively, the complexity may be increased step-wise, with additional dimen-
sions added only in due time, after prior models have been properly calibrated. We may
also note that not all information must necessarily be obtained through cognitive prob-
ing. One could pre-populate a user model with expected values, and have the system se-
lect cognitive probes using expectedmodel change strategies to quickly adapt themodel
to the momentary preferences of the individual user. Similarly, multiple archetypal user
models might be pre-populated, e.g. using statistical inference based on large amounts
of data, and cognitive probes can be used to select between them for any given moment
or person.

2.4.7 Impulsive versus Reflective Responses

Because cognitive probing relies on externally induced brain responses, rather than self-
initiated responses, it is possible that these responses are the result of shallow (impulsive,
intuitive, reflexive) processing, subject to heuristics and biases (Kahneman, 2011). In that
case, it is important to know to what extent the induced brain responses (would) corre-
spond to explicitly given responses.

Refer, for example, to Frankfurt (1971)’s distinction between first- and second-order
volitions, where first-order volitions reflect first impulse desires (e.g., wanting to smoke
a cigarette), while second-order volitions (wanting to stop smoking) reflect our self-
control, reason-based cognition. It is conceivable that a person, given the time to delib-
erate and formulate an explicit response to a probe, would come to a different one than
the one induced and inferred by the technology. As such, cognitive probes could result in
information being implicitly communicated by the user that the user does not or would
not authorise.

Cognitive probing does not prescribe using either impulsive or reflective brain re-
sponse. It is, however, an important distinction for researchers and developers to be
awareof, as it concerns the typeof information that canbe learnedusing cognitiveprobes
in different contexts, and the extent to which this information and subsequent adapta-
tions may be accepted by the user. Furthermore, this can have profound effects on re-
sponsibility assessment, discussed next.
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2.4.8 Outcome Responsibility

Who or what is responsible for an outcome that is based on cognitive probing? As men-
tion in section 2.4.4, the technology acts upon the information it gathers by modulating
future probes in order to learn, but it can also use that information to execute different,
additional actions.

When technology contributes autonomously to the performance of a task a user is
engaged in, it may become difficult to separate the two interacting agents. How would
the user (or others) evaluate the respective contributions of human and technology? By
whose authority is an action executed? To whom would “ownership” of the action be
ascribed, or responsibility for its outcome? Even while performing an action, the users
themselves might be uncertain about being the (only) agent of an action (Haselager,
2013), with systems that make autonomous decisions additionally decreasing the users’
own autonomy (Friedrich, Racine, Steinert, Pömsl, & Jox, 2018).

Because cognitive probing relies on externally induced brain responses, one could ar-
gue that behavioural outcomes based on this information would fall within the reflexive
or spontaneous behaviour class, or at least that the underlying thought process was not
finished (see also section 2.4.7). Users could attempt to disavow such behaviours as not
being congruent with their own reason-based ideas about how they ought to act. Users
who do not agree with (the use that is being made of) their own brain responses may
argue that responsibility lies elsewhere, since their input to the system bypassed their
conscious awareness and control.

Moreover, probing technologymight lead to a situationwhereusers could reasonably
feel that in cases of continuous deepening probes (probes provided on the basis of cogni-
tive information gathered fromprevious probes), their capacity to engage in autonomous
reasoning and decision making may be compromised. In essence, one needs to consider
the implications of “nudging” technology being applied at the level of brain processes,
opening up further possibilities for user manipulation (see also section 2.4.4).

There are different types, or ways of claiming, ownership of action. Under normal
circumstances we accept our actions to be ours, irrespective of whether they were of a
reflexive nature, spontaneous first impulses, or following deliberation. However, when
it comes to assessing the moral consequences of such behaviours, we may differentiate
between them. Theassessmentofmyresponsibility, e.g. myguilt, basedonmybehaviour
that led to damage, e.g. a broken glass, may differ depending on whether my behaviour
was amere reflex, a spontaneousmovement, or a consequence of a reasoned judgement.

Under such circumstances, it seems possible that users will “blame” the technology
in cases with negative outcomes, but praise themselves in cases of success.

The effect of cognitive probing on assessing the responsibility for consequences in le-
gal or financial contexts will be far from straightforward. Presumably, many of such con-
sequences could be dealt with by using liability waivers, although this could affect the
willingness of users to accept cognitive probe technology in realistic contexts (with real-
istic consequences). Also note that procedures and criteria for accepting or attributing
responsibility may diverge significantly between legal, and moral domains. It is impor-
tant that researchers and designers of systemswith direct access to brain activity and the
ability to act autonomously ensure that they act with the user’s permission and in accor-
dance with the user’s wishes (Fairclough, 2009; Mecacci & Haselager, 2019b).
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2.4.9 Privacy and Consent

The interference discussed in section 2.4.5 referred to the immediate intrusion that indi-
vidual probes could pose into a user’s state of mind. The method of cognitive probing
in general, however, could also be understood to intrude more fundamentally into a per-
son’s privacy, as it elicits and utilises brain responses that are beyond the direct control
of the user. As such, cognitive probing allows technology to autonomously gather or “ex-
tract” information from the user, touching upon the privacy of thought. As discussed
above, this information gathering can potentially take place unbeknownst to the user—
and thus, potentially, without consent.

Therefore, caremust be taken that the data is handled with proper care for the user’s
privacy and the security and confidentiality of all gathered data (Fairclough, 2014). Brain
data in particular, being more closely connected to the privacy of “inner” thoughts and
feelings, may be all themore sensitive. Moreover, by utilising automatic brain responses,
the information acquiredmay reflect mental features that, to some extent, remain out of
reach of a person’s self-control, meaning datamay be gathered thatwould not have been
voluntarily provided, or would not even be known by the users themselves.

Hence, users of cognitiveprobingapplications shouldbegiven full transparency: they
should be informed clearly and unequivocally about the nature, methodology, and aims
of the technique (see also Ienca et al., 2018). Specifically for cognitive probing technology,
at the very least, they should be informed that a) cognitive probes induce brain responses
that the users normally cannot suppress, b) such probes and responses can and will be
used to gather information about the user’s cognitive and affective states, and that c) this
information, in addition to contextual information that is also being gathered, will be
used to provide more and possibly better directed probes in order to extract even more
information.

Haselager and Mecacci (2018; see also Mecacci & Haselager, 2019a) discuss applica-
tions of brain measurement aimed at brain reading, i.e., decoding mental content. This
discussion applies to cognitive probing as well, as both methods capture cognitive infor-
mation. They suggest that two factors are of vital importance with respect to potential
abuse: concealability, and enforceability.

Concealability indicates the extent to which a user can be left unaware of the actual
goals behind the particular application, e.g. the nature, amount, or detail of the cognitive
or affective states that are being explored. Note that themere knowledge that one’s brain
states are being monitored and probed does not imply an awareness of which aspects of
cognition are being investigated.

Enforceability is related to theextent towhich theapplication is resilient toa subject’s
voluntary attempt to disrupt the process. In the current context, this implies that once
subjects are participating in the process, themore “automatic” their responses to a probe
are, the more enforceable the information gathering will be.

Consideration of these two factors leads to the further requirement that d) users will
be informed about the exact nature, amount, and detail of the information about cogni-
tive and affective states explored,with in addition e) the purposes forwhich this informa-
tion is being gathered.

Given the sensitive nature of such gathered information, f) procedures and guaran-
tees regarding the ownership of data should be installed ensuring that users of cognitive
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probing applications remain in control of the data acquired, its storage, and its future use
(Fairclough, 2014; Yuste et al., 2017). As onepart in safeguarding the users from the above
issues, g) theusermust have access to a comprehensive andmeaningful representationof
all information in themodel, and insight into the logic of the system’s probes andmodel-
based behaviour, in line with the recent General Data Protection Regulation (GDPR) of
the European Union (European Parliament and Council of the European Union, 2016).

However, it is not only brain-related information, or its interpretation in mental
terms, but also the ensuing operations of the technology thatmight constitute threats to
(mental) privacy of its users. Probe-based technological state changes may lead to pub-
licly noticeable outcomes that, evenwhen in agreementwith a user’s genuine preference,
may be socially problematic or undesirable. At the very least, therefore, h) users should
be aware that aspects of their mental states may be revealed to outsiders in the form of
probes or other adaptations.

Of course, we do notwish to claim that this list of requirements is complete or formu-
lated precisely enough. Moreover, the stringencywithwhich they should be appliedwill
depend considerably on the context and purposes of the applications. However, cogni-
tive probing does pose serious threats to privacy and consent, and this section specifies a
number of concerns which researchers and developers are called on to consider and dis-
cuss.

2.5 Discussion

Cognitive probing combines the ability of technology to interpret ongoing measures of
arbitrary brain activity, with the ability of that same technology to actively and purpose-
fully elicit cognitive and affective responses from its users. This is used to learn and infer
information from these responses. Basedon the resulting knowledge, additional, increas-
ingly targeted responses can be elicited.

Looking at the different commercial, clinical, and experimental approaches and ap-
plications mentioned in section 2.3, we believe the concept of cognitive probing as intro-
duced here describes the fundamental similarity between a number of previously sepa-
rate endeavours. Some early incarnations date back to decades ago, but alongwith an in-
creasing ability to automatically assess and interpret mental states has come an increas-
ing number of recent, novel examples that fit this same definition of cognitive probing.
Some stem from strictly controlled laboratory environments, but given the current com-
mercialisation of neuroadaptive technology, a growing number of examples are nowalso
preparing for general use. Going forward, it is important to recognise the fundamental
similarities shared by these different applications, especially since the specific configu-
ration that defines cognitive probing gives rise to a number of serious ethical considera-
tions.

To further delineate the concept of a cognitive probe, we now consider some counter-
examples that deviate from the definition in specific ways. Without implying that less
care should be taken in these cases, the following examples do fall outside of the specific
scope of cognitive probing.

As one example, wemay consider a casewhere all other requirements aremet but the
response-eliciting event in question was not influenced by the system at all, i.e. it was
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not initiated or manipulated by it. For example, instead of a radio being switched on, a
colleague starts whistling a tune. A context-aware systemmay still register this, identify
it as a noteworthy event, record the listener’s brain response to it, and infer whether or
not this tune is distracting. Since the colleague acts independently, it cannot be said that
their behaviour is a probe from the system.

When the state change is not independent from the technology, a crucial question
becomeswhat exactly counts as being “initiated” or “manipulated” by it. A textmessage
that you receive on your phone was initiated by the sender, but the notification you re-
ceive of itmay not have been, depending on how your phone handles notifications. If the
phone is programmed to always automatically immediately notify you of all messages
that come in, the phone has no control over them and they should be seen as being initi-
ated by the sender of thosemessages. If your phone does have policies in place that allow
it to manipulate the notifications, they can be used as cognitive probes.

Of course a neuroadaptive system may use any and all information available to it,
including all responses to external or otherwise non-probe events. Doing so, however,
would not necessarily constitute cognitive probing, butmore generally the collection, se-
lectively or indiscriminately, of event-response samples.

As another counter-example, a systemmayhaveaccess toameasureof its user’s brain
activity and initiate a state change to get a specific response—butwithout learning from
it. Instead, it could be initiated for the sake of the response itself. A car detecting a state of
drowsiness in its drivermay decide to sound an alarm in order to awaken the driver. This
would be a state change initiated by the car designed to elicit a specific response from its
user, but it would not be a cognitive probe as the loop is not closed and no information is
retained.

Other brain responses may not contain any cognitive or affective information per
se. BCI systems relying on steady-state visually evoked potentials (SSVEPs; Middendorf,
McMillan, Calhoun, & Jones, 2000) for example, make use of the fact that when a hu-
man is presented with a visual stimulus that is flashing at a specific frequency, their vi-
sual cortexwill exhibit neuro-electric activity at that same frequency (and its harmonics).
When different stimuli thus flash at different frequencies, the dominant frequency in the
visual cortex can reveal what stimulus a user is looking at. Thus, SSVEP-based BCI sys-
tems present system-controlled state changes (the flashing of the visual stimuli), moni-
tor the user’s brain response to these state changes, and infer from the found frequency
which letter the user was looking at (i.e., wanted to select). This is not cognitive prob-
ing, however, as the brain response in question is not related to the user’s cognition. The
activity in the visual cortex is a direct result of the sensory input; there is no relevant top-
down cognitive influence. This separates this method from e.g. attention-based mental
spellers, where cognition does influence the measured response. Furthermore, these ap-
plications tend to be one-shot approaches with nomodel learning.

Finally, not all closed-loopneuroadaptive systems (Krol, Andreessen,&Zander, 2018)
use cognitive probing. Adaptive automation, for example, adjusts automation levels
based on a measurement of workload in order to keep this workload within a desired
range (Byrne & Parasuraman, 1996). This principle has also been used to make sure stu-
dents sustain an adequate level of engagement (Yuksel et al., 2016). Here, when a mea-
sure of load surpasses a certain threshold, the technology changes the conditions by e.g.
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increasing or decreasing automation, or presenting material at an appropriate level of
difficulty. These changes are designed to influence the user and maintain a desired psy-
chological state. When, following this, the measure again passes the threshold, further
adjustments are made. This method has many aspects in common with cognitive prob-
ing, but these examples do not employ a model where responses to specific conditions
are saved. These systems demonstrate the idea that directed adaptations based on an
ongoing evaluation of a user’s state can influence that same state, but they stop short
of using that influence and evaluation to automatically learn from the effects of such
adaptations—although they could easily be extended to do so.

As mentioned before, examples or forerunners of cognitive probing can be found go-
ing back decades, with similar developments happening in parallel. This has resulted in
essentially equivalent approaches being developed independently, and being given sep-
arate names. In our proposed unification, we elected for the label “cognitive probing”, or
“affective probing”, as probewas one of the first terms that was and still is being used for
computer-presented stimuli aimed at eliciting specific brain responses (Kane et al., 2000;
Espie, 2007; Lawrence et al., 2014). Wemust note that the same termhas found someuse
also in the fields of questionnaire design, where it refers to follow-up questions targeting
specific previous statements (Beatty &Willis, 2007), and in psychotherapy, where a cog-
nitive probe may be such a question as “What are you thinking right now?” (Beck, 1991).
The semantic overlap here, we believe, does not interfere with the more specific mean-
ing in the context of neuroadaptive technology, but rather demonstrates that this term
readily reflects important parts of the intendedmeaning.

Cognitive probing represents only a specific method in the larger field of neuroadap-
tive technology, but it is a powerful one. It allowsneuroadaptive technology to escape the
confines of a single cybernetic loop (Pope, Bogart, & Bartolome, 1995), and, in effect, al-
lows it to autonomously pose questions to the user, obtaining an implicit answer directly
from the user’s elicited brain activity. Why it asks those questions and what it subse-
quently does with the answers—the options are innumerable.

2.6 Outlook

Traditionally, machines only respond to their operators’ explicit commands. Using pas-
sive brain-computer interfaces and further forms of physiological computing, it is possi-
ble to incorporate automatic interpretations of user states as secondary inputmodalities.
With cognitiveprobing, it is possible tonotmerely rely on thenaturally available informa-
tion, but to actively and autonomously gather information that was not otherwise avail-
able from the user—potentially even unbeknownst to them.

The example of a neuroadaptive book, described by Zander & Krol et al. (2016), pro-
vides an interesting hypothetical scenario for cognitive and affective probing:

While reading, the reader would interpret the story as it unfolded, thus au-
tomatically responding to events with a detectable affective state. Based on
what the reader apparently finds enjoyable, a neuroadaptive system could
then change the content of subsequent pages. With a sequence of such
adaptations, the story is gradually steered in the reader’s preferred direction.
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However, the readerwouldnot actively bedirecting the story, andwouldnot
even need to be aware of the system’s existence. (Zander & Krol et al., 2016)

Interactive narratives using neurophysiological input have been presented before
(Gilroy et al., 2013), but none where the events unfolding on the pages serve both as the
content of the book, and as probes. They are neither distracting nor intrusive, as they
are perfectly embedded into, in fact are, the story itself. The first few chapters may be
pre-determined, designed to learn the reader’s attitudes towards, say, the main charac-
ters. Should, however, this not suffice, the book could decide to present the reader with
another chapter focusing more thoroughly on the one character it is least certain of (i.e.,
uncertainty sampling).

In this example, the complexity of the model depends largely on the amount of pos-
sible paths the book will have. It could be merely a decision between two outcomes, or
morecomplex informationcanbegathered toallowmoredetailedplotdevelopmentsand
twists. In an extreme case, language models may be used to generate new paragraphs
and adaptive probes for an intricate model and potentially endless storyline (Radford et
al., 2019). The purpose of the book as a whole could be, for example, to provide a pleas-
ant experience (sustain a positive psychological state), to induce asmany surprising plot
twists as possible, or even to reveal deep, personal values.

Either way, the final contents of the book will at least partially reflect the reader’s
brain responses. The example thus also makes it clear how the very behaviour and out-
come of a neuroadaptive system may reveal sensitive information, as discussed in sec-
tion 2.4.9. While cognitive probing-basedneuroadaptive systems allow for a unique level
of personalisation, would the reader wish to reveal to others that, for example, evil pre-
vailed in their version of the book?

An illustrative use case for non-embedded cognitive probing may be found with on-
line retailers. After selecting a category, a number of stock items may be presented and
the user’s reaction probed, until a recommendation ismade tailored to the user’s inferred
preferences.

Here, it is obvious to the user that they are being probed, and forwhat purpose. In the
case of the neuroadaptive book, itmay be altogether unclearwhich parts of the rich prose
exactly comprise theprobes andwhat information theyattempt togather. Weemphasise
the ethical issuesmentioned in section 2.4, in particular concealability and transparency.

In theory, a neuroadaptive system can be imagined in a ubiquitous computing ap-
proach, i.e., with access to a large amount of context information concerning the user’s
many everyday interactions with their environment. If even a single cognitive user
state—positive versus negative, satisfaction versus dissatisfaction—could be accurately
inferred and co-registeredwith thesemany interactions and other context information, a
user model could be generated that, over time, could contain a very detailed description
of this user’s habits and preferences. Cognitive probes may be used to expand this user
model with increasing efficiency. A system that continuously learns from our implicit re-
sponses to its directedprobes, and thus generates a richunderstandingof our preferences
and intentions, may even be in a position to exhibit a form of intelligence and empathy,
and support us in a way not currently possible by robots or other machines.

Fromadifferent angle, such a systemmight also be used as a tool to influence the cog-
nition and the mindset of a person in an interplay between the probes’ ability to obtain
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information and its ability to produce specific responses. Imagine a (social) media plat-
formwith access to brain activity, where each presented piece of media could constitute
a probe. Even inferences of seemingly simple information—for example, colour prefer-
ences in order to adjust the interface’s colour scheme—could be used in potentially dan-
gerousways: politiciansofdifferentparties couldbedeliberatelypresentedwithdifferent
background colours, biasing the user to dislike the politician presented outside of the pre-
ferred colour schemeunder the guise of advertisement personalisation. Cognitive probes
may also be capable of assessing political preferences directly. With cognitive probing’s
ability toobtain increasingly specific informationand target specific cognitiveor affective
functions, even outside of the user’s awareness, it may simultaneously produce increas-
ingly subtle methods of manipulating the user’s mindset. We mention this example to
again highlight the importance of consent and transparency.

A number of aspects and considerations mentioned in section 2.4 remain open to in-
vestigation. Can we distinguish between impulsive and reflective responses? To what
extent are they different, neurophysiologically and behaviourally? Which ones could be
targeted using what probes? How do users judge agency and responsibility in different
cognitive probing cases? What influences this? What are potential consumers’ attitudes
towards cognitive probing frome.g. a privacy standpoint? Answers to suchquestionswill
help determine what can and cannot, and what should or should not be achieved using
cognitive and affective probes.

Going forward, provided that researchers and developers properly discuss and ad-
dress these and other serious ethical concerns,we believe that cognitive probing canhelp
make technology more intelligent, more interactive, and more adaptive to their users’
needs and preferences.
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Abstract Background: Electroencephalography (EEG) is a popular method to moni-
tor brain activity, but it is difficult to evaluate EEG-based analysis methods because
no ground-truth brain activity is available for comparison. Therefore, in order to test
and evaluate such methods, researchers often use simulated EEG data instead of actual
EEG recordings. Simulated data can be used, among other things, to assess or com-
pare signal processing andmachine learning algorithms, tomodel EEG variabilities, and
to design source reconstruction methods. New method: We present SEREEGA, Simu-
lating Event-Related EEG Activity. SEREEGA is a free and open-source MATLAB-based
toolbox dedicated to the generation of simulated epochs of EEG data. It is modular
and extensible, at initial release supporting five different publicly available head mod-
els and capable of simulating multiple different types of signals mimicking brain activ-
ity. This paper presents the architecture and general workflow of this toolbox, as well
as a simulated data set demonstrating some of its functions. The toolbox is available at
https://github.com/lrkrol/SEREEGA. Results: The simulated data allows established anal-
ysis pipelines and classification methods to be applied and is capable of producing real-
istic results. Comparison with existing methods:Most simulated EEG is coded from scratch.
The few open-source methods in existence focus on specific applications or signal types,
such as connectivity. SEREEGA unifies themajority of past simulationmethods reported
in the literature into one toolbox. Conclusion: SEREEGA is a general-purpose toolbox to
simulate ground-truth EEG data.
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3.1 Introduction

Having seen almost a century of continuous research and development since its first ap-
plication on humans in the 1920s (Berger, 1929), electroencephalography (EEG) is now
widely used in, among others, clinical settings, neuroscience, cognitive science, psy-
chophysiology, and brain-computer interfacing, while its use continues to expand in
fields such as neuroergonomics (Parasuraman & Rizzo, 2007; Frey, Daniel, et al., 2016),
neurogaming (Krol et al., 2017), neuromarketing (Vecchiato et al., 2011), neuroadaptive
technology (Zander et al., 2016) and mobile brain/body imaging (Gramann et al., 2011).
As of December 2017, PubMed reported over 140 000 publications related to EEG, with
over 4 000 published in each of the past five years.

EEG reflects the electric fields that arise primarily due to the synchronous activity
of post-synaptic potentials at apical dendrites in the cortical surface of the brain, as
recorded by electrodes placed on the scalp. As such, it measures a specific subset of brain
activity. This enables cognitive and affective correlates to be found in the EEG, allow-
ing post-recording or even real-time evaluation of certainmental states exhibited by the
recorded person, such as surprise (Donchin, 1981), error perception (Falkenstein, Hohns-
bein, Hoormann, & Blanke, 1990; Blankertz, Schäfer, et al., 2002), task load (Klimesch,
1999;Mühl et al., 2014; Zander, Shetty, et al., 2017), or imaginedmovement (Pfurtscheller
& Neuper, 2001; Blankertz, Dornhege, Krauledat, Müller, & Curio, 2007). Compared to
other brainmonitoring and imagingmethods, EEG is relatively inexpensive andprovides
a high temporal resolution. It is also becoming increasingly portable and ready for per-
sonal use (Zander, Andreessen, et al., 2017) in various forms of neuroadaptive technology
(Krol, Andreessen, & Zander, 2018). This explains EEG’s relative popularity.

However, these advantages present a trade-off, with costs incurred primarily in spa-
tial resolution. A single electrode records the average activity of up to a billion neurons,
and probably never less than 10 million neurons (Nunez & Srinivasan, 2006). This and
other issues including volume conduction, the placement and distance of the electrodes
relative to the cortical generators of the activity they measure, and the complex relation
betweencortical functionsand featuresof scalppotentials, require that great care is taken
when analysing and interpreting raw EEG recordings.

A host of methods have been developed over the last decades to extract robust fea-
tures from the recorded EEG that correlate to cortical functions and can be understood in
a neurophysiological or statistical sense. Examples are the event-related potential tech-
nique (Luck, 2014), independent component analysis (Makeig, Jung, Bell, & Sejnowski,
1996), common spatial patterns (Guger, Ramoser, & Pfurtscheller, 2000), hierarchical
linear modelling (Pernet, Chauveau, Gaspar, & Rousselet, 2011), and a many signal pro-
cessing andmachine learning algorithms (Lotte et al., 2007).

One major difficulty in developing techniques for EEG analyses is that there is no
ground truth that describes the exact brain activity: The recorded EEG data cannot be
compared to the actual neuro-electric activity of the brain because no technique exists
to provide such a reference measurement. Thus, developers must use other ways to ex-
amine the validity of their EEG analysis approaches. The exact nature and detail of the
required ground truth of course differs depending on the analysis.

To that end, simulated EEG data (or “toy data”) has often been used to test and val-
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idate methods, as for example with blind source separation (Makeig, Jung, Ghahremani,
& Sejnowski, 1999; Potter, Gadhok,&Kinsner, 2002), connectivitymeasures (Silfverhuth,
Hintsala, Kortelainen, & Seppänen, 2012; Stam, Nolte, &Daffertshofer, 2007), artefact re-
moval (Romo-Vazquez, Ranta, Louis-Dorr, & Maquin, 2007; He, Wilson, Russell, & Ger-
schutz, 2007), functional brain imaging (Gramfort, Strohmeier, Haueisen, Hamalainen,
& Kowalski, 2011) and neurophysiological weight vector interpretation (Haufe et al.,
2014). The authors of these examples all implemented simulation approaches from
scratch, usually by linearly mixing a number of independent signals. This linear mixing
was done using random weights, i.e., no realistic spatial information was taken into ac-
count. Other approaches use headmodels in order to providemore realistic linearmixing
and add spatial dependencies to the simulation (e.g., Giraldo, denDekker, & Castellanos-
Dominguez, 2010; Haufe, Tomioka, Nolte, Müller, & Kawanabe, 2010; Haufe, Nikulin,
Müller, & Nolte, 2013; Huiskamp, 2008).

Such custom-made approaches are often difficult to reproduce, as they have been im-
plemented using different software packages, are reported at different levels of abstrac-
tion, and/or may be using headmodels that are not publicly available.

Some authors have not implemented their own methods, but have instead relied on
commercially available packages (e.g., Yao & Dewald, 2005; Lansbergen, van Dongen-
Boomsma, Buitelaar, & Slaats-Willemse, 2011). These packages, however, are not specif-
ically designed for the purpose of simulation, nor are they freely available to the general
public or open to scrutiny.

One open-source package known to the authors that provides simulation functional-
ity is the Source Information Flow Toolbox (SIFT; Delorme et al., 2011). Its main purpose
is to investigate structural, functional, and effective connectivity between brain regions
and networks, but the toolbox can also be used to simulate scalp EEG using a system
of coupled oscillators. Such simulations can serve as effective ground truth for the same
connectivitymeasures that the toolbox investigates, andhavebeenused toevaluateblind
source separationmethods aswell (Hsu,Mullen, Jung,&Cauwenberghs, 2014). The SIFT
toolbox, however, is not intended forwider-purpose simulationandas such, themethods
that can bemeaningfully applied to the data it can generate are limited.

Another work allows a number of predefined responses (e.g. a P300, an eye blink,
a frequency spike) to be configured along a given timeline of events (Lindgren, Merlini,
Lecuyer,&Andriulli, 2018). It focusesoneffects specific tobrain-computer interface (BCI)
applications and is aimed at the batch analysis of BCI classification algorithms.

In a more normative approach, Haufe and Ewald (2016) proposed a simulation and
evaluation framework and made their code publicly available. The framework includes
forward modelling using a realistic head model, both source and sensor noise with con-
trolled signal-to-noise ratios, and signal generation based on autoregressive models. As
with SIFT, this approach focuses solely on connectivitymeasures on continuousdata, and
thus provides no further signal generation options.

A final EEG simulation approach of note is the phantom head created by Oliveira,
Schlink, Hairston, König, and Ferris (2016). They constructed a physical head model,
filling a mannequin head with a conductive plaster and inserting antennae to simulate
current dipoles. This allows unique effects to be investigated: For example, the authors
investigated the effects of headmotion by placing themodel on amotion platform. Con-
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structing suchhardware, however, is not a viable approach formost questionswhere sim-
ulation can provide an answer. Importantly, software is easier to share, maintain, adapt,
and extend.

Clearly, EEG data simulation is widely used as a tool to assess and validate themeth-
ods that are in use and in development. However, to the best of the authors’ knowledge,
there currently exists no software package whose sole or primary purpose it is to simu-
late different, configurable, and/or custom types of EEG data, i.e. a dedicated, general-
purpose EEG data simulation tool. We therefore present SEREEGA, short for Simulating
Event-Related EEG Activity, making EEG data simulationmore accessible to researchers.

SEREEGA is a free and open-source MATLAB-based toolbox to generate simulated,
event-related EEG data. Starting with a forward model obtained from a head model or
pre-generated lead field, dipolar brain components can be defined. Each component has
a specified position and orientation in the head model. Different activation patterns or
signals can be assigned to these components. Scalp EEG data is simulated by projecting
all signals from all components onto the scalp and summing these projections together.

SEREEGA is modular in that different head models and lead fields can be supported,
as well as different activation signals. Five lead fields are currently supported, four pre-
generated, the fifth customisable according to the user’s needs from a standard head
model. Five types of activation signals are provided, allowing the simulation of different
types of systematic (event-related) activity in both the time and the frequency domain,
as well as the inclusion of any already existing time series as an activation signal.

This toolbox is intended to be a tool to generate data with a known ground truth in
order to evaluateneuroscientific and signal processingmethods, suchasblind source sep-
aration, source localisation, connectivity measures, brain-computer interface classifier
accuracy, derivative EEGmeasures, et cetera.

In the following, we first introduce the architecture of the toolbox and provide a brief
introduction to its basic functionality and workflow. We then provide an analysis using
establishedneuroscientific and brain-computer interfacingmethods of a sample data set
created with the toolbox.

3.2 SEREEGA Architecture and Functionality

3.2.1 Principles of EEG Simulation
To simulateEEGdata, the toolbox solves the forwardproblemofEEG, prescribinghowac-
tivation signals fromspecific sources in the brain are projected onto an array of electrodes
on the scalp. In matrix notation, this can be written as

x = As+ ϵ,

with x denoting the vector of the recorded or simulated scalp signal, s the source
activation signal, A the projection matrix used to project signals from the source to the
scalp electrodes, and ϵ denoting a vector of noise.

In SEREEGA, the user defines s,A, and ϵ, allowing EEG datax to be simulated.
Source activations are defined on the basis of so-called components: for each compo-

nent, any number of different signal classes can be defined, which prescribe how corre-
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Notation Description
Â := A·,h,· ∈ Rnchs×3 Projectionmatrix of one source
A ∈ Rnchs×nsrcs×3 Projection tensor of all sources
e ∈ {1, . . . , neps} ∈ N One of neps epochs
E ∈ Rnchs×ntps×neps Simulated sensor noise
gk
c ∈ Rntps Activation signal of one signal class c

for one component k, c ∈
{
1, . . . , nk

cls

}
h ∈ {1, . . . , nsrcs} ∈ N One of nsrcs sources in the lead field
k ∈ {1, . . . , ncmps} ∈ N One of ncmps brain components
nchs ∈ N Number of channels
nk
cls ∈ N Number of classes for component k

oh ∈ R3 Orientation vector for source h
sk ∈ Rntps Activation vector of component k
skt ∈ R Activation of component k at time point t
ŝkt ∈ R3 Oriented activation vector of skt
t ∈ {1, . . . , ntps} ∈ N One of ntps time points per epoch
x̂k
t ∈ Rnchs Projected activation of component k at time point t

X̂
k

∈ Rnchs×ntps Matrix of projected activation of component k
Xe ∈ Rnchs×ntps Matrix of projected activations of one epoch e
X ∈ Rnchs×ntps×neps The final simulated EEG data at sensor level

Table 3.1: Notation used in Section 3.2.1.

sponding activation signals are to be generated. For each signal class, a type of activation
signal (for example, an event-related potential; see Section 3.2.3) is defined, as well as
all corresponding parameters. Furthermore, for each component, a source from the lead
field is specified, which is modelled as a dipole at a specific location in the brain. The
component also contains this dipole’s (i.e. this source’s) orientation. A component thus
prescribes what signal is to be simulated, and how it is to be projected onto the scalp.

SEREEGA simulates one segment of EEGdata, or one epoch, at a time, and repeats this
neps times to obtain a larger data set. In the following, we first consider a single epoch.
The activation signal of each class, gk

c ∈ Rntps , is considered as a vectorwhich consists of
the activation signal (i.e. the amplitude time series) for all ntps time points in this epoch.

Thus, for each component k, its activation sk consists of the summed activations of
all signal classes gk

c assigned to that component, which are nk
cls many:

sk =

nk
cls∑

c=1

gk
c .

For most signal classes, its exact activation signal gk
c is determined procedurally at

runtime based on the specified parameters.
We now describe how an activation signal is projected to the channels. For this, we

consider the signal at a single time point t, by taking the t-th entry of sk, denoted by skt .
We project this signal from a source denoted by h.

The activation signal is projected onto the electrodes on the scalp through a projec-
tionmatrix Âwhich we obtain using lead field theory (Ferree & Clay, 2000). A lead field
contains projection parameters that indicate for each electrode and source how an acti-
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vation at that source is scaled when it is recorded at that electrode on the scalp. To that
end, the activation signal is split in threedirections (representedby the three base vectors
of Euclidean space), resulting in a third-order tensor consisting of nchs layers, nsrcs rows
and 3 columns:

A ∈ Rnchs×nsrcs×3.

Each row describes the projection matrix for a single source. For a specific source h
corresponding to a component k, Â := A·,h,· ∈ Rnchs×3 thus describes the projection
matrix of that component. The orientation oh of source h can be expressed as a linear
combination of the different base vectors contained in the three columns of Â:

(1, 0, 0)T the x-direction, pointing to the left ear,

(0, 1, 0)T the y-direction, pointing to the nose, and

(0, 0, 1)T the z-direction, pointing to the top of the head.

This can be expressed by

oh = oh1

 1
0
0

+ oh2

 0
1
0

+ oh3

 0
0
1

 =

 oh1
oh2
oh3

 , for oh1 , o
h
2 , o

h
3 ∈ R.

To project a component’s activation onto the scalp, this activation skt is first oriented
by scaling it in the corresponding directions, yielding the oriented activation vector ŝkt ∈
R3:

ŝkt := skt · oh =

 skt · oh1
skt · oh2
skt · oh3

 .

Then, the oriented activation vector ŝkt is projected through the lead field which cor-
responds to the source of the activation, by multiplication with the projection matrix
Â = [aij]i=1,...,nchs

j=1,...,3
:

x̂k
t := Â · ŝkt =

[
3∑

j=1

aij ŝ
k
t

]
i=1,...,nchs

.

This yields a vector x̂k
t ∈ Rnchs in which every element corresponds to the simu-

lated signal amplitude at timepoint t, projected fromsourceh to one electrode. To obtain
the corresponding matrix for all time points for the component k, the vectors of all time
points are concatenated:

X̂
k
=

[
x̂k
1, x̂

k
2, x̂

k
3, · · · , x̂k

ntps

]
.

All simulated and projected activation signals X̂
k
of each component are summed to

form one epoch. Thus, for one epoch, the simulated scalp signal Xe has the following
form:

Xe =

ncmps∑
k=1

X̂
k
.
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Figure 3.1: Impression of the SEREEGA GUI.

The parameters in the signal classes describe how each component’s activation sig-
nals vary between epochs. The projectionmatrix Â can also be made to vary from epoch
to epoch, to simulate non-stationarities in the components’ projections, for example due
to shifts in electrode positions. Finally, all scalp signalmatrices for all epochs are concate-
nated in the third dimension, yielding a third-order tensor inRnchs×ntps×neps . It is at this
point that sensor noiseE is optionally added (source-level noise is defined as an element
of gk

c ). This yields the tensor of simulated EEG data:

X =
[
X1, X2, X3, · · · , Xneps

]
+E.

This is the data format used by most software packages to represent epoched EEG
data.

3.2.2 Platform and License

MATLAB R2014b or higher is recommended for SEREEGA. Some optional functions de-
pend on the Digital Signal Processing (DSP) toolbox version 8.6 (R2014a) or higher.
EEGLAB (Delorme & Makeig, 2004) is required as it is used for a number of functions.
Lead field generation either requires additional head model files which can be down-
loaded from their respective websites, or the FieldTrip toolbox (Oostenveld, Fries, Maris,
& Schoffelen, 2011). Since SEREEGA ismodular, future functionsmayhave further depen-
dencies.

SEREEGA is licensed under the GNU General Public License, version 3, and the code
is publicly available on GitHub*. This manuscript refers to version 1.0.5-beta.

3.2.3 Terminology andWorkflow

SEREEGA is available as an EEGLAB plug-in including a graphical user interface (GUI)
that allows the core steps of designing and running a simulation to be performed; see

*https://github.com/lrkrol/SEREEGA
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Figure 3.2: Channel locations and estimated brain boundaries for three head models. Left:
The New York Head with its 228 channels. Middle: a 339-channel layout around a standard
average head model available by default in FieldTrip. Right: The Pediatric Head Atlas (8 to
18, version 2) showing 2562 channels.

figure 3.1. For more advanced use, SEREEGA is based on written commands and assign-
ments.

A general configuration variable holds information about the number of epochs to
simulate, their length, and their sampling rate. This configuration, as well asmany other
variables, are contained withinMATLAB structure arrays.

SEREEGA’s forward model is contained in a lead field structure array. The lead field
structure contains all possible sources within a virtual brain, modelled as dipoles at spe-
cific locations along with their projection patterns. The word source thus corresponds to
an index in this lead field. For each such index, the lead field contains a position (x, y, z),
and projection patterns along three axes (x, y, z). As mentioned in Section 3.2.1, a linear
combination of the three projection patterns can effectively be used to virtually define
the source dipole’s orientation in 3D space. A source together with its orientation can be
savedas a component structure array,which additionally needs tobe assigned a signal: the
simulated neuro-electrical activity thatwill be projected from it, such as an event-related
potential or an oscillation at a specific frequency. These are defined separately and added
to the components.

The main workflow consists of defining any number of such components, each con-
taining at least one source, orientation, and signal. The simulation of scalp data finally
generates each component’s signals and projects them onto the scalp.

The following sectionsgo through themain steps inmoredetail. Note that these steps
must not necessarily be followed in this order.

Lead Field Generation

The lead field determines both the maximum possible number of sources as well as the
number of channels that will be simulated. Currently, SEREEGA supports two processes
to obtain a lead field: it can be obtained from an existing, pre-generated lead field, or a
custom lead field can be generated from a given head model. Currently, support for four
pre-generated lead fields is included.
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The New York Head (ICBM-NY) pre-generated lead field includes almost 75 000
source locations and their projectionsonto to228 channels (Huang, Parra,&Haufe, 2016).
The electrode positions follow the international 10–05 system (Oostenveld & Praamstra,
2001) but also include two rows of channels below the ears. Each source comes with a
default orientation that orients it perpendicular to the cortical surface.

The Pediatric Head Atlases comprise three different headmodels with pre-generated
lead fields for up to three different electrode layouts each, ranging from 128 tomore than
2500 electrodes (Song et al., 2013). Themodels cover heads from three pediatric age clus-
ters, 0–2, 4–8, and 8–18 years old. Lead field sources are spaced in an approximately
1 × 1 × 1 mm grid and range from 3188 to 4837 in number. These lead fields do not
contain default dipole orientations. For inclusion in SEREEGA, the given electrode and
dipole coordinates are transformed upon initialisation to be centred around (0, 0, 0) and
aligned to the axes.

FieldTrip (Oostenveldet al., 2011) canbeused togeneratea leadfieldasneeded. Using
a given head volume, it can generate any number of sources with a given resolution, pro-
jecting to any number of channels. By default, a standard headmodel and a 339-channel
definition file following the international 10–05 system are included. FieldTrip does not
provide default source orientations.

Whenobtaininga leadfield, it is possible toonlyusea subset of theavailable channels
by indicating their labels. Convenience functions are available to simulate standard EEG
cap layouts with e.g. 64 channels. Figure 3.2 shows the available channel locations for
three headmodels.

Source Selection and Orientation

The lead field structure contains all possible sources. From these, one or more sources
can be selected using differentmethods to be included in the simulation. It is possible to
simply obtain a random source, or to obtain multiple random sources that are at least a
given distance apart from each other. It is also possible to select the source nearest to a
specific location in the brain, or all sourceswithin a certain radius froma specific location
or another source. Sources are referenced using their index in the lead field. Figure 3.3,
left, shows the location of one source using EEGLAB’s standard head model and corre-
sponding plotting function. (In this case, EEGLAB’s standard head model fits the lead
field’s head model. SEREEGA’s default plotting functions do not depend on this being
the case.)

Sources represent dipoles at the indicated location. Having selected a source location,
this dipole can be oriented to face different directions, which determines how it projects
onto the scalp. The lead field makes this possible by containing the dipole’s projection
pattern onto all selected electrodes into threemutually perpendicular directions x, y, and
z—the base vectors mentioned in Section 3.2.1. A linear combination of these three pro-
jection patterns can then be used to effectively orient the dipole in space. Thus, a dipole’s
orientation is indicatedusing three values,with (1, 0, 0) representing a perfect x-positive
orientation, (0, 1, 0) y-positive, ( 1√

2
, 1√

2
, 0) a 45-degree angle with the same amplitude,

et cetera. Figure 3.3, right, shows the three separate patterns as well as a combined pro-
jection pattern for one source.
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Figure 3.3: Left: The location of source number 7479 in the New York Head as plotted onto
EEGLAB’s standard head model. Right: Four projection patterns of that source onto the
scalp. From top left to bottom right: projection in the x-positive, y-positive, and z-positive
direction, and a linear combination of the three (arbitrary units). This effectively orients the
dipole at the source’s location in 3D space.

Signal Definition

Having selected a source location and orientation, i.e. a projection pattern, one or more
signals can be defined to be projected onto the scalp as if they originate from that location.
These are defined using classes. A class contains a signal’s type and any parameters cor-
responding to that type in a structure array. For each simulated epoch, a signal will be
procedurally generated using the parameters of that class.

SEREEGA currently includes four types of signals: systematic deflections in the time
domain (i.e., event-related potentials), systematic modulations of oscillatory activity
(i.e., event-related spectral perturbations), stochastic processes in the time domain (i.e.,
noise), and autoregressive signals (i.e., spatio-temporal signals with systematic interac-
tions between them). Figure 3.4 provides an overview of three of these and their main
parameters. A final data type enables the inclusion of any already existing time series as
anactivation signal. The following sectionsmention theprimary freeparameters for each
type.

Event-Related Potentials An event-related potential (ERP; Luck, 2014) class defines one
or more positive and/or negative ‘peaks’ or deviations from a baseline in sequence. Each
peak is determined by its latency in ms, its width in ms, and its amplitude in µV. For
example, the ERP in figure 3.4 is a single positive peak at 500ms, 200mswide, of 1 µV.

A peak is generated by centring a normal probability density function around the in-
dicated latency with the given width covering 6 standard deviations. This is then scaled
to the indicated amplitude. For multiple peaks, each peak is generated individually and
then summed together.

Event-RelatedSpectralPerturbations WhereERPs represent systematic activity in the
time domain, event-related spectral perturbation (ERSP) classes are defined primarily using
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spectral features. The term ERSP refers to event-related spectral power changes (Makeig,
Debener, Onton, & Delorme, 2004); in SEREEGA, it refers to the class of signals that gen-
erate specific spectral powers and/or changes therein.

First, a base frequency is defined, either as a pure sine wave of a single frequency, or
as a frequencyband. In this latter case, uniformwhite noise is band-pass filtered in the in-
dicated band using a window-based finite impulse response filter with a Kaiser window
and an automatically decided filter order (Oppenheim & Schafer, 2010). The left middle
panel of figure 3.4 shows an oscillation of 10 Hz, the panel to the right of that shows fil-
tered noise with power focused between 5 and 10 Hz.

The minimal definition of an ERSP class consists of a frequency (or frequency band)
and its amplitude. In case of a single frequency, a phase can optionally be indicated as
well.

In other cases, these parameters merely define a base oscillation that is further mod-
ulated. The lower rowof figure 3.4 presents two types ofmodulations that can be defined
for ERSP classes: (inverse) burst modulation and amplitude modulation. The former at-
tenuates or amplifies the signal to a given degree using a Tukey window of given width,
latency, and tapering. A Tukey window can be adjusted ranging from a square to a co-
sine shape. This mimics event-related synchronisation and desynchronisation. The lat-
termodulates the amplitude of the base signal to a given degree according to the phase of
a sine wave, whose frequency and phase can be defined in the class. Additionally, a pre-
stimulus period can be indicated such that the modulation only starts at a given latency.

Noise A class of a noise signal simply produces coloured noise, from either a normal
Gaussian or a uniform distribution, of a given amplitude. A noise class is defined by at
least a colour and an amplitude. The upper right panel of figure 3.4 shows white noise
with an amplitude 1 µV.

The Gaussian function uses MATLAB’s DSP toolbox to generate noise with a spectral
characteristic of1/fn,withn either -2, -1, 0, 1, or 2. Theuniformfunctionfirst samples the
signal from a uniform distribution and then applies a Fourier transformation to achieve
the same spectral characteristic.

Data For the inclusionof anygivenpre-existing time series, for exampledata generated
elsewhere or taken from existing EEG recordings, a data class can be defined. It must be
given a matrix of data, epoch-dependent indices, and an absolute or relative amplitude.
It will project the indicated data scaled to the given amplitude for each simulated epoch.

Autoregressive model A final type of class generates signals based on a linear autore-
gressive model (ARM), following the approach by Haufe and Ewald (2016). For a single
source activation, this generates a time series where each sample depends linearly on its
preceding samples plus a stochastic term. At least the order of themodel, i.e. the number
of non-zero weights on the preceding samples, and the signal amplitude must be config-
ured. The exact weights of the model are determined automatically.

It is also possible to simulate connectivity between multiple sources. Uni- and bidi-
rectional interactions can be indicated such that a time-delayed influence of one source
on another is included in the signal. Either the number of interactions is configured and
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the toolbox will randomly select the interactions, or a manual configuration of the exact
directionalities can be indicated. Themodel order is the same for all interactions.

Interacting signals are not simulated at runtime, but generated beforehand and in-
cluded in the simulation as data classes.

Variability

It defeats the purpose of simulatingmultiple epochs if every epochwere to be exactly the
same. To take anERPas example, itmaynot bedesirable tohave apeakdefined at 500ms
appear at exactly 500ms in every epoch. In fact, perhaps the ERP should sometimes not
appear at all. To that end, both classes and components contain parameters to add vari-
ability to the generated signal.

For all parameters displayed in figure 3.4 controlling the shape of the various signals,
twomore parameters exist that control those base parameters: each parameter has a cor-
responding deviation parameter, and a slope parameter.

The deviation indicates a range of allowed values. A base value of 2 with a deviation
of 0.3, for example, will vary from epoch to epoch between 1.7 (2− 0.3) and 2.3 (2 + 0.3)
following a Gaussian function. Specifically, the range of deviation covers 6 standard de-
viations. This can be used to model general Gaussian variability within the system. A
deviation is calculated for each parameter value separately for each epoch. For some pa-
rameters, one additional shift parameter is available to make these values deviate with
equal magnitude within one epoch. This can be useful to e.g. have the latency of multi-
ple peaks in an ERP vary together, maintaining the overall shape of the ERP.

The slope indicates a systematic change over time. A base value of 2 with a slope of
−0.3, and no deviation, will be 2 on the first epoch, and 1.7 (2−0.3) on the final epoch. In
between, it will scale linearly with the number of the current epoch. Slopes can be used
tomodel e.g. effects of fatigue and habituation, or to cover a range of intended values.

Each class also has a probability parameter that determines, for each epoch, that sig-
nal’s probability of appearance. A probability of 0.5 indicates a 50%chance of the defined
signal being generated for any simulated epoch. In case it is not generated, a flatline is
returned instead, meaning it does not interfere with any other activations at that time.

Deviation and slope parameters are also available for components, to control the
dipole orientation. Components can have one additional source of variability, with re-
spect to the source location itself. Instead of one source index, multiple source indices
can be indicated as that component’s source. In that case, one of themwill be randomly
picked for each epoch. As such, together with the orientation variability, spatial variabil-
ity can be added as well.

Simulating Scalp EEG

A component is a structure array that contains, for each element, at least one source index,
a corresponding orientation, and at least one signal. Thus, by combining the results of
the previous two steps into components, it is specified which of the defined signals are
projected fromwhich source at which orientation. It is possible to assign more than one
signal to a component. To addnoise to an ERP, for example, both anERP and a noise class
can be added to the same component. All signals assigned to a component are summed
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Figure 3.4: Sample signals annotated with the base variables that control their behaviour.
From top left to bottom right: event-related potential (ERP); coloured noise; single-
frequencyunmodulatedevent-related spectral perturbation (ERSP); frequencybandunmod-
ulatedERSP; inverseburst-modulatedERSP; amplitude-modulatedERSP.Eachbasevariable
can additionally be given a deviation and a slope to control the epoch-to-epoch and system-
atic progressive variability of the signal. Not illustrated: the autoregressive model (ARM)
and data classes.
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together before being projected. When the same signal class is given to multiple compo-
nents, a new instance of that signal will be generated for each component at runtime.

There is no limit to the number of components that can be defined, nor to the number
of signal classes that can be added to each component.

A simulation function takes the defined components, the lead field, and the general
configuration as input, and outputs the simulated scalp data in a channels×samples×
epochsmatrix, aswell as components×samples×epochs source data. For each epoch,
this function follows the forward model described in Section 3.2.1 to produce the scalp
data. That is, it generates and sums each component’s signals, projects them onto the
scalp using the given lead field, source location, and orientation, and then sums all the
projected activations. Each signal is generated independently of the others. For interact-
ing signals, as with ARM classes, the signals are generated beforehand and included as
data classes.

At this stage, a final layer of noise can optionally be added to the simulated scalp data
to simulate sensor noise. This is uniform, temporally and spatially uncorrelated white
noise.

Manual and RandomDefinition of Signal Classes

As a final point it is worth mentioning that not all of the available parameters must nec-
essarily be set by the user. Only a small number are required, and a validation function
automatically sets all others to their default values. All deviation-related values default
to zero. Non-zero default values are chosen to bemost useful; the phase of an oscillation,
for example, defaults to a new random value for each epoch. A convenience function ex-
ists to add deviations and/or slopes of a certain percentage of each base value to signal
classes. When the lead field contains default source orientations, thesewill be used auto-
matically when no other orientation has been explicitly indicated.

When multiple components are to be simulated, it is also not necessary to manually
define all signals. For one, the same signal can be added to multiple components. Also,
convenience functions exist to generate any number of ‘random’ ERP or ERSP classes,
based on a range of allowed base values.

Sample Code

The following lines of code reflect the workflow explained above, generating 100, 1-
second epochs of brown noise from 64 sources spaced at least 25 mm apart, projected
onto 64 channels.

epochs = struct('n', 100, 'length', 1000, 'srate', 1000);
leadfield = lf_generate_fromnyhead('montage', 'S64');
sourcelocs = lf_get_source_spaced(leadfield, 64, 25);
signal = struct('type', 'noise', 'color', 'brown', ...

'amplitude', 1, 'amplitudeDv', .5);
components = utl_create_component(sourcelocs, signal, leadfield);
data = generate_scalpdata(components, leadfield, epochs);
EEG = utl_create_eeglabdataset(data, epochs, leadfield);
EEG = utl_add_icaweights_toeeglabdataset(EEG, components, leadfield);
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The epochs structure array contains three fields configuring the number of epochs,
their length in ms, and the sampling rate in Hz. On the next line, a lead field is obtained
from the New York Head using a preconfigured montage of 64 channels. Next, 64 source
locationsare randomly selected fromthe leadfield, such that eachsource is at least 25mm
apart from all the others. As a signal, brown noise is used with an amplitude varying be-
tween 0.5 and 1.5 for each epoch. 64 components are then created by combining that
same signalwith the 64 previously-defined source locations. Because theNewYorkHead
is used, no orientations must be indicated explicitly: the toolbox will use the default val-
ues included in the lead field. Finally, scalp data is generated: generate_scalpdata
simulates the components’ signals, projects them according to their respective orienta-
tions through the lead field, and generates the data set as configured in epochs. In the
last two linesof code, thedata set is transformed intoanEEGLAB-compatible format, and
a ground-truth ICA decomposition is added.

When using the GUI, these steps would be followed inmore or less the same order.

3.3 Sample Data Set

To demonstrate some of the toolbox’s basic functionality, we now present a sample data
set that was generated using SEREEGA and simulates a number of known cortical effects
during a hypothetical experiment. We then apply established analysis methods to this
data and present the results.

3.3.1 Simulated Experiment and Cortical Effects

The hypothetical experiment represents a visual go/no-go experiment. The visual stimu-
lus inquestion is a pattern change, eliciting aN70-P100-N135 complexover occipital sites
(Pratt, 2011). In the ‘go’ condition, the pattern change represents a target stimulus elicit-
inga strongP3a-P3bcomplex,mostpronouncedover theparietal-central-frontalmidline
(Polich, 2007). Upon perception of the target stimulus, the participants initiate amanual
response with their right hand, resulting in mu- and beta band desynchronisation over
sites covering the contralateral motor cortex.

Specifically, the visually evoked potential complex was modelled after findings by
Gomez Gonzalez, Clark, Fan, Luck, and Hillyard (1994) and Pratt (2011). The N70 was
a single dipole projecting centrally from the visual cortex. The P100 and N135 projected
bilaterally from Brodmann areas BA 17 and BA 18, respectively. The P3a-P3b was mod-
elled after Polich (2007) and Debener, Makeig, Delorme, and Engel (2005) with dipole
locations taken from the latter. Themanual response, finally,mimicsmu- and beta-band
findings of manually responded visual targets byMakeig, Delorme, et al. (2004).

The visually evoked potentials were modelled as single-peak ERP classes centred
around 70, 100, and 135 ms, respectively, with widths of 60, 60, and 100 ms, and am-
plitudes of 7.5, 7.5, and 10 µV, as well as amplitude slopes of -2, -2, and -3 to simulate a
level of habituation (Pratt, 2011).

The P3a is an ERP classwith a single 400mswide peak at 300ms of amplitude 10 µV,
and an amplitude slope of -5, simulating fatigue (Polich, 2007). The P3b ERP consists of
twopeaks. Oneat400ms (width600ms, amplitude7µV, amplitude slope -5), andoneat
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500ms (width 1000ms, amplitude 2 µV, amplitude slope -1). This latter peak represents
the longer-lasting effects of the P3. The stronger slope of the P3b as compared to the P3a
is a known finding reflecting habituation to the stimulus (Polich, 2007). All parameters
of the ERP classes were given a deviation of 20% of their value relative to stimulus onset.

The motor cortex is simulated using four components for each class: both left and
right motor cortex components are included, each with mu and beta band effects. In the
non-target condition all components simply emit resting state mu (here as 8–12 Hz) and
beta (19–26 Hz) activity implemented using the ERSP class with no modulation, and an
amplitude of 2 µV. In the target condition, the left motor cortex classes are given an in-
verse burst modulation centred around 650ms (mu; width 600ms, taper .5, relative am-
plitude .5) and 600ms (beta; width 500 ms, taper .8, relative amplitude .5) respectively.
ERSP parameters had a deviation of 10% relative to stimulus onset, with the exception of
latency deviation, which was fixed at 100ms.

To simulate background processes, brown noise was added to each component (as
per Freeman, Ahlfors, & Menon, 2009), with an amplitude of 5 µV. Furthermore, brown
noise was also projected from a random selection of source locations, such that the total
number of components in the data set was 64, all at least 25 mm apart from each other.

A single ‘base’ participant was defined and simulated using the specified component
locations and orientations. For 10 subsequent participants, each component’s location
was randomly chosen within 20 mm of the original locations. Dipole orientations were
randomly varied to be within±25% of the original value for each axis.

This data set was simulated using the New York Head Model and projected onto the
S64 montage of 64 channels. For each condition (target versus non-target), 100 epochs
were simulated of 2000 ms each with a 500 ms pre-stimulus period, at a sampling rate
of 1000 Hz.

3.3.2 Analyses and Results
The generated data set was subjected to a number of standard analyses to demonstrate
their applicability and to illustrate the data itself.

First, figure 3.5 shows a single-subject ERP image analysis at threemidline electrodes
of the ‘base participant’. This clearly shows the N70-P100-N135 complex, pronounced
most strongly at parietal-occipital sites, as well as the P3, with the P3a most prominent
over fronto-central sites and the P3b more pronounced further centrally and parietally.
Also visible is the epoch-to-epoch variability of the ERP signals in time and in amplitude,
as well as their spatial differences with peaks pronounced differently at different sites.
The effects over time can also be seen, with amplitudes diminishing at different rates.

Second, a cluster-based group-level analysis was performed. Using DIPFIT
(Oostenveld & Delorme, 2003), equivalent dipole locations were reconstructed from the
data set’s ICA decomposition. These locations as well as the independent components’
calculated ERSPs were used for k-means clustering. Due to the variability of the data as
well as the clusteringalgorithm,manual adjustmentwas still necessary to createone clus-
ter containing all leftmotor cortex components. The calculateddipole locations are given
in figure 3.6. As was defined, they vary around a given mean location. Figure 3.7 shows
the mean calculated event-related spectral perturbation for this cluster for both the tar-
get (left) and the non-target (right) conditions. The target condition shows clearmu and
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Figure 3.5: ERP image (Makeig, Debener, et al., 2004) at channel Fz, Cz, and POz showing the
epoch-to-epoch variability of the simulated ERP signals as well as their spatial differences
and effects over time.

Figure 3.6: Locations of the left motor cortex equivalent dipoles in each simulated partici-
pant, from DIPFIT (Oostenveld & Delorme, 2003) calculations based on the independent
components’ scalp maps.

beta effects similar to those found byMakeig, Delorme, et al. (2004, figure 8).
Finally, the data was subjected to an analysis of classifiability for a hypothetical BCI

system to be able to detect the elevated P3 response in the target condition compared to
the non-target condition, and, separately, the manual response.

The P3 classifier followed a windowed means approach (Blankertz, Lemm, Treder,
Haufe,&Müller, 2011), using themean amplitude of six consecutive 50ms timewindows
starting 200ms after stimulus onset as features. Before, the signalwas bandpass-filtered
between 0.1 and 15 Hz.

Themanual response was classified using a logBP approach (Pfurtscheller & Neuper,
2001), using as features the power between 7 and 27 Hz, 400 to 1000 ms after stimulus
onset, focused on sites covering the motor cortex: FC1, FC2, FC3, FC4, FC5, FC6, C1, C2,
C3, C4, C5, and C6.

Both classifiers were implemented using BCILAB (Kothe & Makeig, 2013). A regu-
larised linear discriminant analysis classifier was trained to separate classes (Duda, Hart,
& Stork, 2001). A 5 × 5 nested cross-validation with margins of 5 was used to select the
shrinkage regularisation parameter, and to generate the estimates of the classifiers’ accu-
racy listed in table 3.2. With chance level at 50%and significance reached at 57% (Müller-
Putz, Scherer, Brunner, Leeb, & Pfurtscheller, 2008), we see that both classifiers reach
significance for all ‘participants’, with the exception of participant 5,where no significant
difference could be detected between the elicited P3 responses of the two conditions.
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Figure 3.7:Mean event-related spectral perturbation calculated for the leftmotor cortex clus-
ter. Left: target condition (right-manual response). Right: non-target condition (no re-
sponse).

This shows the data’s variability on another level and demonstrates that levels of sig-
nificance can be achieved with neither a ceiling nor a floor effect.

Participant WMTP WMTN WMAcc BP TP BP TN BP Acc
0 0.78 0.75 0.76 0.70 0.64 0.67
1 0.76 0.69 0.72 0.67 0.69 0.68
2 0.74 0.74 0.74 0.57 0.58 0.57
3 0.77 0.72 0.74 0.61 0.62 0.61
4 0.72 0.57 0.64 0.65 0.64 0.64
5 0.55 0.58 0.56 0.66 0.69 0.67
6 0.68 0.57 0.62 0.61 0.70 0.65
7 0.71 0.64 0.67 0.70 0.68 0.69
8 0.71 0.61 0.66 0.63 0.55 0.59
9 0.76 0.67 0.71 0.56 0.59 0.57
10 0.67 0.57 0.62 0.69 0.64 0.66
Mean 0.72 0.65 0.69 0.64 0.64 0.64

Table 3.2: Classification accuracies for two classifiers, one using the windowed means ap-
proach (WM) and one based on band power (BP). TP = true positive rate, TN = true negative
rate, Acc = overall accuracy. Significance is reached at an accuracy of 0.57. TheWMclassifier
for participant 5 does not reach significance.

3.4 Discussion

In this paper we presented the core functionality of SEREEGA, a free and open-source
MATLAB-based toolbox to simulate event-related EEG activity. SEREEGA allows any
number of components to be defined in a virtual brain model, each with a specific lo-
cation in the brain, a freely oriented scalp projection, and any number of signals. Five
different types of activity are currently supported, allowing systematic effects in both the
time and frequency domain to be simulated, mimicking known EEG features. Simulated
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EEG data can serve as ground truth for the development of newEEG analysismethods or
the validation of existing ones.

The presented data set serves as a demonstration of some of SEREEGA’s functions:
a set of known cortical effects was simulated, mimicking a hypothetical experiment. It
furthermore demonstrates how a basic initial configuration can be procedurally varied
to simulate any number of additional participants with different anatomical layouts and
variations in their cortical responses, leading to different results for examplewith respect
to classification accuracies.

The classification accuracies presented here were only around 7 to 12 percentage
points above significance on average. This is primarily due to the relative amplitude of
the added noise, i.e., the signal-to-noise ratio of the generated data set. This can easily
be varied to increase or decrease the classification accuracies as needed, or to investigate
the accuracy as a function of this ratio. SEREEGA allows signal and noise components to
be simulated separately, and thenmixed to achieve a specific signal-to-noise ratio.

The ability to generate data as needed should be met with some caution. When val-
idating signal detection mechanisms, for example, insufficiently considered parameters
may lead to trivial results. Similarly, there is a potential danger of making circular argu-
ments. For example, when SEREEGA is used tomodel a linear effect, and a linearmethod
is subsequently used to again identify this effect, the obtained results could be essentially
tautological. In such a case, the results would be applicable only to the extent that real
EEGdata contains a comparable linear effect. More generally, properties of signal simula-
tionmethods are based on assumptions that must not necessarily, or not fully, be met in
real EEG data, and this limits the transfer of findings from simulated data to real record-
ings. This is a fundamental property of all simulation approaches, and users of simula-
tions should be aware of the generator algorithms underlying the data, how they relate
to the methods they are investigating, and how they may or may not relate to real EEG
recordings.

Indeed, the open architecture of any general-purpose toolbox places some responsi-
bility with the user to make use of the tools in a way that is compatible with the tested
hypothesis. Different analysismethods have different assumptions as to e.g. the number
of active sources or the statistical properties of the source signals. While SEREEGA is ca-
pable of adhering to a large variety of assumptions, not all data that is produced by it will
adhere to the same ones. This depends on the design of the data.

It is thus highly important to carefully consider a simulation’s parameters. With
SEREEGA, different levels of complexity and realism can be generated. For some pur-
poses, theremay be no explicit need to simulate complex data sets or otherwise precisely
model specific known cortical effects: The results of the methods may hold regardless of
the complexity of the simulation. For example, to validate, in theory, a method such as
logBP, a pure sine wave among white noise in a low number of randomly mixed chan-
nels may suffice. However, other methods do require a higher level of realismwith e.g. a
higher number of channels and realistic spatial dependencies, a higher number of noise
sources, et cetera. For the sake of demonstration, we opted for a more realistic hypothet-
ical experiment to demonstrate in this paper. We do not mean to say however that this
level of realism is the explicit goal of SEREEGA, nor that it is methodically preferable. We
did intend to illustrates how SEREEGA can be used for this purpose.
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It should also be mentioned that realism here refers to the ultimately simulated
source and scalp signals, not their underlying neurophysiology. As such, for example,
ERPsare simulateddirectly asERP-like time series, not as e.g. lower-level phase-resetting
oscillations. Similarly, other known EEG effects such as phase-amplitude coupling, trav-
ellingwaves, EEGmicrostates, and certain cross-trial dependencies are also not currently
implemented. Additional signal classes or component properties would have to be writ-
ten before testingmethods that require such types of signal generators. The online docu-
mentation provides a tutorial.

Another important factor in a simulation’s level of realism is how realistic the noise
is. The included stochastic noise processes follow current simulation standards, where
in particular 1/f and 1/f 2 frequency scales have been identified to characterise EEG
(Bédard, Kröger, & Destexhe, 2006; Freeman et al., 2009). This is most likely a simplifi-
cation. Empirical EEG recordings may have different spectral properties, especially non-
stationarities over time, and are influenced by deeper and smaller processeswhose activ-
ity is not directlymeasurable usingEEG.However, there is currently no consensus regard-
ing an alternative noise simulationmethod. In SEREEGA, any time series can be included
in a simulation using the data class. This also allows noise extracted from empirical EEG
recordings to be used. Where available, this may be a better solution. In the future, we
may consider a public database of such recordings for all users to draw from. In fact, such
adatabase couldcontainempirical recordings reflectingknowncortical responsesaswell,
allowing simulations to be pieced together by combining different parts of real EEG data.
For this to be feasible, a large number of empirical data sets must be made available us-
ing a single, standardised format to describe them. Hierarchical Event Descriptor (HED)
tags (Bigdely-Shamlo et al., 2016) offer a way to do that, and the Human Electrophysi-
ology, Anatomic Data and Integrated Tools (HeadIT) Resource is one such database that
could serve as precursor to the database needed for this purpose (Swartz Center for Com-
putational Neuroscience (SCCN), n.d.).

Notable sources of artefacts are the eyes and muscles. The head models currently in-
cluded in SEREEGA are corticalmodels and do not contain sources in the eyes ormuscles.
To the best of the authors’ knowledge, no head model is currently available that does. A
project is currently underway to construct a headmodel that contains a larger part of the
human anatomy. For themoment, SEREEGA allows custom sources to be added to a sim-
ulation, by manually providing their coordinates and projection patterns. These can be
taken from empirical recordings.

When takingdata fromempirical recordings, potential anatomical differences should
be taken into account. Since SEREEGA supports different headmodels, it is not necessar-
ily the case that they use the same coordinate format (e.g. Talairach, MNI, or custom
measurements). Sources found at the same [x, y, z] location in different empirical stud-
ies or SEREEGA scripts may correspond to different actual locations depending on the
headmodel used. Although authors who publish headmodels and lead fields often take
great care to standardise their formats, they are not all uniform. Sometimes this is nec-
essary: the dimensions of the Pediatric Head Atlas covering zero- to two-year-olds are of
course smaller than those of an adult human’s head model. SEREEGA includes plotting
functions to investigate the size, shape, and location of a lead field’s headmodel and the
sources contained within, as well as to compare them against a standard adult head.
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To the extent that their details were sufficiently reported, all (software) simulations
that were performed by the authors mentioned in the introduction of this paper can
be done using SEREEGA. The five signal types and other functions of SEREEGA cover
and extend the processes used in those methods. This refers to the core steps of each
simulation—further implementation details may of course differ. SIFT, for example, be-
ing focused on connectivity, has more options to control the parameters of the autore-
gressive models than SEREEGA currently does.

A limitation in the current architecture is that thedefined components are necessarily
independent at runtime: the procedurally generated activity of one component cannot
presently depend on the activity in another. For such interactions to be modelled, the
signals must be generated beforehand and included as data classes, as is the case for the
autoregressive models.

In its current version, SEREEGAmakes five accurate, high-density headmodels acces-
sible in one toolbox, and allows five types of activation signals, enabling coloured noise,
ERP-like deflections in the time domain, oscillatory activity with specific spectral char-
acteristics and/or temporal modulations, and autoregressive signals to be simulated, as
well as the inclusion of any other pre-generated or pre-recorded time series. This covers
and extends the vastmajority of past and present-day EEG simulation approaches. Addi-
tionally, FieldTrip-generated leadfields basedon standardor customheadmodels canbe
used, and the toolbox’s architecture allows it to be readily extendedwith additional head
models and signals. For more specific needs, SEREEGA has been designed to bemodular
with extendability in mind.

SEREEGA thus represents, for the first time, an extensive general-purpose toolbox
dedicated to simulating event-related EEGactivity,making simulationmethodsmore ac-
cessible, standardised, and reproducible.

With SEREEGA, we hope to help developers of EEG-based methods by making data
simulationmore accessible. With the consistent and increasing popularity of EEG, there
is an accompanying need to further develop and validate EEG analysis methods. Sim-
ulated data can help with that by providing a ground truth to verify these methods’ re-
sults. Seeing the current scope of application of simulated EEG studies, we believe that
SEREEGA can help with the great majority of these, and can be easily extended for most
of the remaining needs.
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Abstract In the context of brain-computer interfacing, it is important to investigate
what regions of the brain a classifier focuses on. For one, this will clarify to what extent
the classifier relies onbrain activity, as opposed toundesirable non-cortical signals. More
generally, the practice is informative as it allows conclusions to be drawn about the cor-
tical regions—and thus, cortical functions—that contribute to the effect under investi-
gation. In this study, we start to investigate different methods to visualise the regions of
interest of classifiers based onwindowedmeans and on common spatial patterns. Specif-
ically, we take individually reconstructed source spaces and transform the classifier filter
weights into relevance weights indicating the relative contribution of each source to the
classifier. This is visualised across participants in an average brain. By decomposing the
classifierweights into separate sources and localising these in the brain, thismethod pro-
vides a tool to evaluate classifiers and test hypotheses.
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4.1 Introduction

Abrain-computer interface (BCI) allowsanoutput channel tobeestablished fromauser’s
brain to a computer—an output channel “that is neither neuromuscular nor hormonal”
(J. R.Wolpaw&Wolpaw, 2012). Such a channel canbeused in variousways. For example,
it allows paralysed or locked-in patients to communicate with the outside world using
mental spellers (Birbaumer et al., 1999) and brain-actuated prostheses (Müller-Putz &
Pfurtscheller, 2008). BCI-based systems enable people to control such and other devices
using only their brain activity.

A passive brain-computer interface (pBCI) (Zander&Kothe, 2011) is a BCI system that
uses similar hard- and software in order to interpret ongoing, “natural” brain activity
(Krol, Andreessen, & Zander, 2018) that is not meant to control a device. Instead, such
brain activity reflects the human user’s cognitive or affective state. Passive BCI-based
quantifications of mental states are used as implicit input to support ongoing human-
computer interaction (Zander et al., 2014).

With recent trends in neuroadaptive technology and pBCI itself (Krol & Zander, 2017;
Zander, Shetty, et al., 2017; Krol et al., 2016; Zander & Krol, 2017), as well as advances
in signal acquisition hardware (Zander, Andreessen, et al., 2017), such real-world pBCI
applications have become increasingly close at hand. In particular, electroencephalogra-
phy (EEG) has become increasinglymobile (Mullen et al., 2015). An important issuewith
EEG however, is that many different sources of activity combine to form the final signal
measured at the scalp. This includes not just numerous cortical sources, but all electro-
magnetic activity present in the body as well as in the environment. Notably, eye and
muscle artefacts can contaminate the data.

During EEG experiments in realistic contexts, a great amount of eye and muscle ac-
tivity is to be expected. Furthermore, this activity can be highly correlated to the exper-
imental conditions. A classifier trained to distinguish between data reflecting different
conditions can thus be highly influenced by such non-brain activity. Because of this, it
is important to verify towhat extent an advertised brain-computer interface system is in-
deedbasedon brain activity. For example,whena system is intended tomeasurenegative
affect from brain activity, it may inadvertently use activity from the corrugator muscle
of the face (Larsen, Norris, & Cacioppo, 2003). Such a system may not be as reliable in
different contexts (e.g. where sunshine leads to excessive squinting), and may be more
accurately categorised as a form of physiological computing (Fairclough, 2009).

While detection of non-brain influences is one specific case where extended feature
analysis can provide important answers, understanding the relative contributions of dif-
ferent brain sources is another. A classifier is trained to distinguish between different
conditions using any and all information available. This makes it a powerful method to
distinguish between brain activity in different conditions (Noh & de Sa, 2014), but also
means that the classifier can be influenced by a variety of cognitive processes. For ex-
ample, even when targeting a specific cognitive process such as motor imagery, activity
from other processes may interfere with the recordings (Mousavi et al., 2017) and affect
the classifier. Knowing what information carries what weight can help to validate the
classifier and the experimental paradigm. If the cortical areas that a classifier focuses on
can be identified, this may provide insights into the different cognitive processes under-
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Figure 4.1: Ground-truth locations in thebrain of the simulated class-dependent signals, cov-
ering the 1.5 cm maximum deviation. In data set 1, source numbers 1 and 2 generated ERPs
in one class, but not in the other. In data set 2, 1 and 2 generated alpha activity in one class,
while 3 and 4 did so in the other.

lying the investigated effects. When a classifier’s primary source of distinguishing brain
activity comes from the visual cortex, for example, this may hint that low-level sensory
aspects of the stimuliweremore important than further cognitive interpretation of those
stimuli. Such insights can also be used to improve experimental paradigms andBCI train-
ingmethods (Mousavi & de Sa, 2017).

In this paper we explore, with simulated data, aspects of a method used earlier
(Zander et al., 2016) tovisualise ina three-dimensionalheadvolume theareasof thebrain
a BCI classifier focuses on. The original method applied only to windowed-means classi-
fiers of event-related potentials (Blankertz et al., 2011); herewe describe an adaptation of
that method, as well as an extension that applies to common spatial patterns (Ramoser
et al., 2000).

4.2 Methods

4.2.1 Data Simulation

In order to have a known ground truth to evaluate the method, we used simulated EEG
data. This was generated using SEREEGA (Krol, Pawlitzki, Lotte, Gramann, & Zander,
2018), an open-source toolbox dedicated to simulating event-related EEG activity. Using
the NewYork Headmodel and lead field (Huang et al., 2016), two sets of 64-channel data
were simulated. Each data set consisted of two conditions (classes) for the classifier to
distinguish.

Data set 1 This data set contained systematic class differences in the temporal domain.
One class consisted entirely of brown noise emanating from 64 sources spaced through-
out the brain. The second class consisted of equally arrangednoise, alongwith two event-
related potentials (ERPs) emanating from two selected sources, respectively (numbered 1
and 2 in Figure 4.1). The second source’s ERPhad an average amplitude four times greater
than the other; however, this larger-amplitude ERP only occurred randomly in 25% of
epochs of that class. Single epoch amplitudes varied by 20%. Both peaked at 300 ms
± 50 with a width of 200ms± 40.
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Data set 2 This data set contained systematic class differences in the spectral domain.
Both classes contained brown noise emanating from 64 sources spaced throughout the
brain. Furthermore, each class contained additional uniform white noise filtered be-
tween 8 and 14Hz, emanating from two sources each. In both classes, one source’s signal
amplitude was twice that of the other. (From Figure 4.1, source numbers 1 and 2 were
active in one class; 3 and 4 in the other.)

Note that the sources selected here do not reflect any deliberately chosen functional
region. For the purposes of this paper, the selected regions’ neuroscientific significance
is not relevant: wemerely wish to reconstruct their locations.

Each data set mentioned above consisted of 10 simulated ‘participants’. The non-
noise brain source locations were relatively consistent across these participants, differ-
ing up to 1.5 cm across participants. (Note that a small shift in position can lead to a
significant change in projection as, due to the cortical folds, the source will be oriented
differently relative to the scalp.) The other sources were randomly distributed for each
participant. A total of 100 epochs of 800ms each were simulated for each class.

The signal-to-noise ratiowas controlled in such away that a cross-validated estimate
of the classifier accuracywould roughly average 75–80%,whichare commonrates forBCI
applications.

4.2.2 Classifier Visualisation in Putative Source Space

Separation of the Data into Sources

Wewish to visualise a classifier in putative source space. To that end, independent of any
BCI classifier, the data must first be separated into putative sources. Different methods
exist for this purpose. In this paper, we use independent component analysis (ICA) (Bell
& Sejnowski, 1995) as an example. ICA is a blind source separation method that decom-
poses the data x into statistically maximally independent sources s by finding a trans-
formation or ‘unmixing’ matrix A such that x = As. A is a filter matrix weighting the
individual channel activations in sensor space to obtain the identified independent com-
ponent activations. Inversely,A−1 contains the forwardmodel of these components, i.e.,
their projections onto the scalp. Other source separationmethods will produce different
contents ofA, but their application in this method is essentially the same.

Independent EEG sources are dipolar (Delorme, Palmer, Onton, Oostenveld, &
Makeig, 2012). We can thus fit an equivalent dipole model to the forward ICA decom-
position, e.g. using the EEGLAB toolbox DIPFIT 2.3 (Oostenveld & Delorme, 2003). The
dipolemodel provides a 3D localisation for each independent component thatminimises
the residual variance between the dipole and the component projections.

For the results in this paper, since we used simulated data, we did not calculateA on
the data. Instead, we obtained the ground-truthmixingmatrix directly from the simula-
tion. The equivalent dipole model however was calculated separately using DIPFIT.

Obtaining a Classifier

The method presented here applies to linear discriminant analysis (LDA)-based spatio-
temporal classifiers. In particular, we present results for common spatial patterns and
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the windowed-means approach.
In the windowed-means approach (WM) (Blankertz et al., 2011), the mean ampli-

tudes of the scalp activations at each electrode and in each time window are extracted
as features, towhich shrinkage LDA is applied to separate the classes. This results in LDA
filter weights wWM = Σ−1

WM(µ1 − µ2) where µ1 and µ2 are the mean of the features for
classes 1 and 2 respectively andΣWM is the common class covariance.

Common spatial patterns (CSP) (Ramoser et al., 2000) are used to extract features in
the frequency domain. CSP finds the optimal set of filter weights that maximise the vari-
ance of the filtered signal for one class while simultaneously minimising it for the other.
Usually the topm < C

2
filters for each class are selected, whereC is the number of chan-

nels. The data in each epoch is spatially filtered to this new pseudo-channel space and
the log of the signal’s variance on each pseudo-channel is selected as the set of features
for the classifier. We then apply a shrinkage LDA, resulting in LDA filter weightswCSP.

Obtaining a Classifier’s ForwardModel

In case of theWM classifier, the LDA filter weights cannot be neurophysiologically inter-
preted. As Haufe et al. explain, “classifier weights can exhibit small amplitudes for mea-
surement channels containing the signal-of-interest, but also large amplitudes at chan-
nels not containing this signal” (Haufe et al., 2014). Therefore, we must first transform
the LDA filter weights into patterns. For this paper, we did this by multiplying the LDA
filter weights of the backward model by the regularised LDA’s common covariance ma-
trix (as opposed to the non-regularised version (Haufe et al., 2014)). Thus, the patterns
pWM = ΣWMwWM = µ1 − µ2 show the differential scalp activity between classes.

For the CSP classifier, let CSP filters be columns of the matrixW ∈ RC×C . CSP pat-
terns are then defined to be columns ofP = (W−1)T ∈ RC×C . Essentially,P andW are
the forward and backward models, respectively. However, not each of the selected CSP
filters contributes equally to classification. Their respective contributions depend on the
LDAweights that were trained on their features. Here, the same LDA filter weight issues
apply that were mentioned above. We thus transform these into interpretable weight-
ings or forward weights indicating their relative contributions: w̃CSP = ΣCSPwCSP where
ΣCSP ∈ R2m×2m is the common covariance of the CSP features from classes 1 and 2. We
use these forward weights to scale the CSP patterns for visualisation: let Psel ∈ RC×2m

be the CSP patterns corresponding to the 2m selected CSP filters, then the i-th column in
pCSP is the i-th column inPsel scaled by the i-th element in w̃CSP.

Wenowhavepatterns representing the forwardmodel for these classifiers in the form
of weights for each electrode. For WM, we have one pattern for each time window. For
CSP, we havemweighted patterns for each class.

Projecting the Classifier Patterns into Source Space

The ICA’s unmixing matrixA−1 transforms sensor-level scalp activations into source ac-
tivations. Similarly, it can transform sensor-level weights into corresponding weights in
source space. When patterns contain class-relevant scalp projections, projecting these
into source space gives us the relevance weights wr = |A−1p| that indicate how the dif-
ferent source activations linearly combine to create these patterns. In other words, the
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relevance weights reflect to what extent the sources contribute to the patterns. By exten-
sion, the relevance weights thus reflect to what extent the sources contribute to the class
differences. For our purpose, the sign of the weights is not relevant at this point, hence
we take the absolute value.

In case ofWM,we nowhave one set of relevanceweights per timewindowper partic-
ipant. In case of CSP,we have 2m sets per participant. Each set contains asmanyweights
as we have independent components for that participant.

Alternative SourceWeights

Using different methods can give different perspectives on the data. We have explained
how sensor-level patterns can be transformed to obtain source-level relevance weights.
Alternatively, source-level weights can be calculated in source space directly, indepen-
dent of the classifier. For example, we can use Pearson correlation to obtain a set of
weights for theWM case.

To that end, we first repeat the feature extraction in source space, i.e., we obtain the
mean of each source activation in each time window. We then calculate the correlation
coefficient between these source featuresFs and the vector of true class labelsL to obtain
a set of weightswWMcorr = |corr(Fs, L)|. The sign is irrelevant for our purpose.

Visualising RelevanceWeights in Source Space

In case of WM, we generate one visualisation per time window, each illustrating the
sources contributing to the class differences at that time. In case of CSP, we generate
one per class, illustrating the sources distinctive for that class.

For each time window or class, respectively, the obtained relevance weights are dis-
tributed to the dipole locations of the corresponding sources for each participant. We
then generate a weighted 3D kernel density plot containing these weights for all partici-
pants in one plot. For this, we use the EEGLAB plug-in dipoleDensity v0.36 (Miyakoshi,
2003) which aligns the output to slices of the mean MNI brain. For the figures in this
paper, we used a smoothing kernel of 12 mm.

4.3 Results

Figure 4.2 shows the output of the presentedmethod for all participants in one case. The
top left shows the sorteddistributionof the relevanceweights. Theother panels showdif-
ferent slices of themeanMNI brain alongwith the colour-codedweighted dipole density,
or ‘relevance density’. The sparse distribution indicates that a relatively small number
of sources receive a relatively high percentage of weights. In other words, the method
shows that the differences between the classes can be traced back to a relatively specific
area in the brain.

Figure 4.2 visualises class 1 of the CSP classifier calibrated on data set 2. We see that
themost dense, i.e. themost relevant area is near source number 1 in figure 4.1. A second,
weaker area of relevance is near source number 2. This accurately reflects the simulation
of data set 2, where class 1 was defined by activity in these two sources, with the signal
amplitude of source number 1 twice that of source number 2.
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Figure4.2: Visualisationof theCSPclassifier: class 1. Slices are labelledwith their correspond-
ingMNI coordinates. Top left: sorted dipole weight distribution.

To preserve space, the other figures only show the sagittal density slices. Figure 4.4
(left) visualises the second class of data set 2, as identified by the CSP classifier. This ac-
curately reflects the correct locations of source numbers 3 and 4.

Figure 4.3 (left) visualises the regions of interest of the LDA classifier calibrated on
data set 1 in a selected time window. This, too, accurately reflects the ground truth that
sources in the right-occipital and left-frontal lobes (i.e. numbers 1 and2 infigure4.1)were
generators of the class differences. Notably, we see that the sources areweighted roughly
equally, with source 2 weighted only slightly more than source 1. This is in line with the
signals that were generated by these two sources. The amplitude of source 2 was four
times that of source 1. However, the probability of a signal occurring at all in source 2
was only 25%, whereas source 1 was active in each simulated trial. The mean amplitude
of these sources over all trials was thus roughly the same, but their predictive value was
not.

Figure 4.3 (right) visualises the alternative weights for data set 1, described in sec-
tion 4.2.2. We see a high correlation density for source number 1 and a significantly lower
density for source number 2. This reflects the difference in predictive value between
sources 1 and 2.
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(a) (b)

Figure 4.3: Left (a): Partial visualisation (sagittal section) of theWMclassifier: projectedLDA
weights. Right (b): Partial visualisation (sagittal section) of source feature class correlation
in data set 1: source correlation weights.

(a) (b)

Figure 4.4: Left (a): Partial visualisation (sagittal section) of the CSP classifier: class 2. Right
(b): Combined projection patterns of the two class-dependent sources in data set 1, for four
of the simulated participants.

4.4 Summary

We simulated two data sets of 10 simulated participants each. Each participant’s data
was simulated with unique locations for the generator sources, with some consistency
maintained for the sources that generated the class differences. In one data set, these
class differences were caused by the presence of event-related potentials from two
sources. In the other, differences were caused by the presence of alpha-band activity in
different sources. An ICA solution was available for the simulated data.

Two different classifiers were trained on the two data sets respectively: AWM classi-
fier, focusingon temporaldifferencesbetween theclasses indata set 1, andaCSPclassifier,
focusing on spectral differences in data set 2.

For theWM classifier, we transformed the LDA filter weights into patterns represent-
ing the forward model. For the CSP classifier, we separated the produced CSP patterns
and weighted them by computed forward weights.
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We then transformed these patterns into relevance weights connected to indepen-
dent components using the unmixing matrix of each participant’s data’s ICA solution.
Since a 3D position in the brain was calculated for each of these independent compo-
nents, we were able to generate a ‘relevance density plot’ indicating the classifiers’ re-
gions of interest. As we used simulated EEG data, we compared the obtained results to
the known ground truth and could verify that the generated plots corresponded to the
original sources.

For theWMclassifier, we also presented an alternativemethod to calculate relevance
weights directly in source space. This method can provide a different perspective on the
brain dynamics underlying the class differences.

4.5 Discussion

In our earlier work (Zander et al., 2016) we presented a combination of the two WM-
basedmethods discussedhere,where the classifier’s regions of interestwere additionally
weighted by those regions’ class-correlation. In this paper we simulated data that high-
lights how these twomethods can provide different perspectives when used separately.

The use of simulated data enabled us to compare the method’s results to a known
ground truth. We see that under these circumstances, the method accurately recovers
the correct sources in the brain. Of course, simulated data represents only a first test case.
The previous iteration of this method has already been shown to produce results in line
with hypotheses on real EEG data (Zander et al., 2016), and we will continue this work
by validating the current method on other real EEG recordings. We will also extend the
method tofilter-bankCSP (Ang, Chin, Zhang,&Guan, 2008), andmake all code available
for free.

Simulated data also allowed us to use a ground-truth ICA decomposition to initially
control for the varying results that different ICA methods provide. In future work, we
will furthermore apply themethod to simulateddatawith ICAdecompositions of varying
quality. And, since estimating the covariance matrix is a fundamental step in producing
the patterns, we will further investigate the influence of different covariance estimation
methods on the patterns and their projections into source space.

Themethod presented here visualises the areas in the brain that the classifier focuses
on, for two popular classificationmethods. The patterns that can be obtained from these
classifiers canbeneurophysiologically interpretedon their own (Haufe et al., 2014). How-
ever, the currentmethodprovides twoadditional advantages. First of all, the patterns are
decomposed into individual sources. A single pattern can consist of the combined projec-
tions of any number of different sources, and different source projections can interfere
with each other to the point of making interpretation difficult. For example, figure 4.4
(right) shows the combined projection patterns of the two class-dependent sources in
data set 1 for four of the simulated participants. As we can see, minor changes in source
location and orientation produce large differences in the projection pattern. From these
patterns, it is not obvious that they are produced by two distinct sources, let alone their
location. With accurate ICA models, we can untangle this relation and show individual
source contributions to the classifier.

Secondly, this method uses an equivalent dipole model to visualise the sources in 3D
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space. Projection patterns coming from roughly the same cortical area can varymarkedly
between participants due to anatomical differences. A 3D visualisation of the cortical ar-
eas corrects for these differences in away that e.g. amean projection pattern cannot. We
visualise the combined relevance weights of all participants in a single plot to highlight
the most consistently relevant areas.

It is important to be able to perform an inspection of a classifier’s regions of inter-
est, and compare the results to our hypotheses as well as other perspectives on the data.
When we design a BCI application, we hypothesise what functions (and thus, what re-
gions) of the brain will be targeted. Visualisation methods such as this one enable us
to compare a classifier’s actual regions of interest to these hypotheses, and validate our
assumptions—and to gather new insights about the cortical processes underlying the
observed effects.
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Abstract The effectiveness of today’ s human–machine interaction is limited by a com-
munication bottleneck as operators are required to translate high-level concepts into a
machine-mandated sequenceof instructions. In contrast,wedemonstrate effective, goal-
oriented control of a computer systemwithout any form of explicit communication from
the human operator. Instead, the system generated the necessary input itself, based on
real-time analysis of brain activity. Specific brain responses were evoked by violating the
operators’ expectations to varying degrees. The evoked brain activity demonstrated de-
tectable differences reflecting congruencywith or deviations from the operators’ expecta-
tions. Real-time analysis of this activity was used to build a user model of those expecta-
tions, thus representing the optimal (expected) state as perceived by the operator. Based
on this model, which was continuously updated, the computer automatically adapted
itself to the expectations of its operator. Further analyses showed this evoked activity
to originate from the medial prefrontal cortex and to exhibit a linear correspondence to
the degree of expectation violation. These findings extend our understanding of human
predictive coding and provide evidence that the information used to generate the user
model is task-specific and reflects goal congruency. This paper demonstrates a form of
interaction without any explicit input by the operator, enabling computer systems to be-
comeneuroadaptive, that is, to automatically adapt to specific aspects of their operator’ s
mindset. Neuroadaptive technology significantly widens the communication bottleneck
and has the potential to fundamentally change the way we interact with technology.
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5.1 Significance

The human brain continuously and automatically processes information concerning its
internal and external context. We demonstrate the elicitation and subsequent detec-
tion and decoding of such “automatic interpretations” by means of context-sensitive
probes in an ongoing human–computer interaction. Through a sequence of such probe-
interpretation cycles, the computer accumulates responses over time to model the oper-
ator’ s cognition, even without that person being aware of it. This brings human cogni-
tion directly into the human–computer interaction loop, expanding traditional notions
of “interaction.” The concept introduces neuroadaptive technology—technology which
automatically adapts to an estimate of its operator’ s mindset. This technology bears rel-
evance to autoadaptive experimental designs, and opens up paradigm-shifting possibili-
ties for human–machine systems in general.

5.2 Introduction

In the European Union, 96% of enterprises rely on computers for their productivity
(Eurostat, 2016). Advances in human-computer interaction (HCI), concerning the effec-
tive, efficient, and satisfying use of computer systems, may thus carry great societal ben-
efits, e.g. in terms of productivity (Rogers, Sharp, & Preece, 2011). However, although in-
teraction techniques have become increasingly user-friendly—e.g. from punch cards to
touchscreens—they still dependon theuser (operator) to translate their original thought
or intention into a sequence of small, explicit commands. This translational step, where
the human operator must ultimately obey the machine’s logic, presents both a commu-
nication bottleneck and a source of potential error (Tufte, 1990). At the same time, the
computer has practically no limitation to the amount of information it can communicate,
and is not as adaptable as its user. In these aspects, present-day HCI is asymmetrical
(Suchman, 1987). Comparing this to human-human interaction, G. Fischer (2001) em-
phasizes the importance of a shared understanding of the situation and an understand-
ing of the communication partner. In this sense, for a computer system to ‘understand’
its user, it needs a model of that user—a source of information that goes beyond the ex-
plicitly given commands. On the basis of such a model, a computer system could adapt
its behavior to better suit the currentmode of the user (G. Fischer, 2001). This could help
alleviate the issue of asymmetry. Relevant information to that end concerns the user’s
intentions, subjective interpretations, and emotions.

Four decades of developments in brain–computer interfaces (BCIs) (J. J. Vidal, 1973;
J. Wolpaw & Wolpaw, 2012) have yielded a set of methods that may be used to obtain
such information in real time, provided that this information is detectably reflected in
brain activity. Specifically, BCIs can detect in real time changes in the electroencephalo-
gram (EEG) and translate these changes into control signals, in line with the principles
of physiological computing (Fairclough, 2009). A subgroup of BCIs, so-called “passive
BCIs” (pBCIs) (Zander & Kothe, 2011), focuses onmonitoring otherwise covert aspects of
the user state (Zander & Jatzev, 2012) during an ongoing HCI. Neurophysiological corre-
lates of the above-mentioned aspects can be detected and interpreted in the context of
the interaction, and can be used to inform the computer about relevant changes in the
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user’s cognition and affect. Using pBCI, thus, a computer can in fact acquire information
about its operator other than the explicitly given commands. As such, neurophysiological
activity can induce appropriate changes in the machine in real time, essentially serving
as an implicit command, without requiring the user to exert any conscious effort in com-
municating to the computer (Zander & Kothe, 2011).

Previous and present-day BCI systems use information derived about the user state
in only an ad hoc fashion: momentary information derived by the BCI from the EEG is di-
rectly interpreted as a specific user intention (Schultze-Kraft et al., 2016; Zander, Gärtner,
Kothe, & Vilimek, 2010), situational interpretation (Blankertz et al., 2011), or a change in
the cognitive (Gerjets et al., 2014) or affective (Chanel, Kierkels, Soleymani, & Pun, 2009)
state. These implementations represent one-to-one mappings of user states to machine
behavior. We propose, however, that a machine using pBCI can detect both general user
states and transient, event-related responses, andcanuse these to continuously andaccu-
mulatively learnabout its operator. Specifically,wepropose that themachine collates the
neurophysiological responses of its operator (i.e., implicit inputs) and coregisters them
against the events and contexts that evoked them. This allows the machine to build and
continuously update a specific and context-sensitive model of that operator (Zander &
Jatzev, 2012). The goal is to combine the information gathered from multiple responses
to different events to gain insights into higher-level aspects of the operator’s cognition.

One aspect of higher cognition that may be inferred in this manner is described by
the theory of human predictive coding. Predictive coding holds that there exists a contin-
uous, automatic prediction of future (neuronal) events, as well as a continuous compar-
ison of those predictions with their corresponding final perception (Clark, 2013; Friston,
2010; Brown, Friston, & Bestmann, 2011). Discrepancies resulting from these compar-
isons inform the brain of the correctness of its predictions and actions, providing a fun-
damentalmechanism—prediction errorminimization—to shape and optimize behavior.
The corresponding predictive signals are assumed to be carried by the dopaminergic sys-
tem. Changes in the continuous evaluation of events and actions lead to changes in the
dopaminergic input to the anterior cingulate cortex, (dis)inhibiting its neurons and elicit-
ingadetectable response (Holroyd&Coles, 2002). Predictionsofwhat is expected tohap-
pen, in this sense, relate closely to what is intended to happen. Thismakes the correlates
of predictive coding a fundamental source of information concerning user intention—an
aspect of the user’s cognition that is highly relevant to HCI.

In this paper, we demonstrate that by collating passive BCI output and context in-
formation, it is possible to develop, step by step, a user model that accurately reflects
correlates of predictive coding and reveals task-relevant subjective intent.

Specifically, we demonstrate that a user model can be developed and used to guide
a computer cursor toward the intended target, without participants being aware of hav-
ing communicated any such information. Using a passive BCI system, the participant’s
situational interpretations of cursor movements were classified and interpreted, in the
given context, as directional preferences. A user model was generated to represent these
context-dependent directional preferences, and this model was then used to guide the
cursor toward the intendedmovement direction.
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5.3 Results

The experimental paradigm involved a form of cursor control. The cursor moved dis-
cretely over the nodes of a (4×4 or in later stages 6×6) grid. For each movement the
cursor could travel up to eight directions, horizontally, vertically, and diagonally, to one
of the adjacent nodes. Each movement served both to move the cursor and to elicit a
neurophysiological response, reflecting the subjective correctness of that movement. In
essence, each movement thus also served as a probe for information. One of the grid’s
corners was designated the target. For each movement, it could thus be determined at
what angle of deviance relative to the target the cursor hadmoved. This was used for an
objective interpretation of the cursor’s behavior. We describe the paradigm in detail in SI
Appendix.

The event-related potential (ERP) following each probe (i.e., each cursor movement)
is shown in Fig. 5.1a. A one-way analysis of variance of the systematic peak differences
around 180 ms indicated a significant main effect of angular deviance from the target
direction on peak amplitude [F(7,126) = 47.243, P < 0.001]. Specifically, the peak ampli-
tudes (Fig. 5.1b, upper curve) differed significantly (P < 0.001) between both the lowest
and the highest angular deviation from the target direction as used by the classifier. In
between, the peak amplitudes scaled linearly with angular deviance, as fitted by a linear
regression model using each group’s mean angular deviance as a predictor (slope coeffi-
cient b=−0.0035, F =45.28, P<0.001;R2 =0.33). Further posthoc comparisons corrected
for false discovery rate additionally indicated that significant differences between adja-
cent groups (P < 0.05) were foundmostly for groups of lower angular deviance, whereas
differences between the three largest-deviance groups (124◦ and up)were not significant.
The results of all posthoc comparisons are listed in SI Appendix, Table S3. In summary,
the probe elicited systematic variations in event-related amplitudes, depending on the
goal congruency of the presented stimulus.

To enable real-time detection of the individual, single-trial neuroelectric responses,
wecalibratedadiscriminative classificationsystem. Calibrationwasbasedon twoclasses
of responses representing the extremeends of the spectrum,with angular deviances of 0◦

making up the one class, and angular deviances of ≥135◦ the other (Fig. 5.2a). This classi-
fication systemused a subject-dependent linear combination of all 64 available channels,
taking into account full scalp information. It automatically generated appropriate spatial
filters for eight 50-ms time windows—starting at 50 ms after stimulus presentation—
using supervised machine learning and linear discriminant analysis. This set of filters
weighted each electrode in each time window, depending on its relevance to classifica-
tion. The recordedsignalprojected through themthusallowedanoptimaldiscrimination
between the two classes. This projected recorded signal—from all 64 channels, between
50 and 450 ms after stimulus presentation—defined the control signal. The feature ex-
traction is described in more detail in SI Appendix.

The resulting classification system not only provided a filtered discriminative con-
trol signal; it also allowed us to investigate which cortical sources the system focused on.
Based on this information, conclusions can be drawn about the discriminative cognitive
processes underlying the classification. Fig. 5.1c–e shows an analysis of the features used
for classification between 150 and 200 ms, highlighting the relevant factors in this time
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Figure 5.1: Neurophysiological analysis. (a) Grand average ERP at Fz (n = 19) time-locked to
cursor movement, divided into eight groups depending on angular deviance. (b) Peak am-
plitudes around 180 ms for the ERP in A, and mean classifier output for cursor movements
sorted by angular deviance with selected significant differences indicated (***P < 0.001, **P
< 0.01, *P < 0.05). (c) Grand average ERP (n = 19) projected through the sources focused
on in the third time window (150–200 ms; indicated in gray). (d) Scalp map of difference-
between-classes activity that contributed to classification in the third time window. (e)
Source localization for the third time window.

window: the discriminative scalp activity, the source localization of this activity within
the brain, and a projected ERP of the signal generated from the identified sources. SI Ap-
pendix, Fig. S5 and Movies S1 and S2 present this same analysis for the full time course
under investigation. See SI Appendix, Fig. S8 for scalp maps of the class-specific activity
in each time window.

This approach identified a specific neuroanatomical area across participants: The sys-
tem based its decisions on neuronal activity that predominantly originated in the me-
dial prefrontal cortex (mPFC). The classification system was trained only on two binary
classes representing the smallest and largest angular deviances. Back-projection of the
signal through the system’s filters, however, reveals that the classification system opti-
mally identified the samesources that generated the linearmodulations seen in thegrand
average ERP. Following the pattern found for the peak amplitudes at Fz, peak amplitudes
of the projected ERPs differed significantly (P < 0.001) between the classes used by the
classifier. Inbetween, thepeakamplitudes scaled linearlywithangulardeviance, asfitted
by a linear regression model of the aggregated means, using each group’s mean angular
deviance as a predictor (b = −0.0019, F = 31.9, P = 0.011; R2 = 0.91). Statistically significant
differences between adjacent groups also followed a similar pattern; see SI Appendix, Ta-
ble S5 for all pairwise comparisons. It is thus clear that the classification system focused
on a response that reflected the probe’s logic.

The signal thus carried task-relevant information. For a true test of this signal’s

117

This is the postprint version of publishedmanuscript: Zander, T. O., Krol, L. R., Birbaumer, N. P., & Gramann, K. (2016).
Neuroadaptive technology enables implicit cursor control based onmedial prefrontal cortex activity. Proceedings of the National

Academy of Sciences, 113(52), 14898–14903.



Neuroadaptive Technology Enables Implicit Cursor Control

Figure 5.2: Cursor behavior and user model generation. (a) Sample online cursor move-
ments. Also indicated: selected movement directions, their relative angular deviance, and
class membership (calibration phase). Movements with an angular deviance >0◦, <135◦

(e.g., gray arrows) were not in the training set. (b) User model evolution during the move-
ments in A based on movement classifications. Ground truth is taken from button presses.
(c) The mean final user model representing the directional probabilities/preferences upon
reaching the target, grouped by absolute target position.

single-trial reflection of individual judgments of cursor movements, and thus its useful-
ness in creating a user model describing subjective intent, we created a closed-loop, on-
line version of the original offline paradigm. Following each single cursor movement,
an individually calibrated classification system classified the evoked response. The ex-
tracted informationwas used for reinforcement learning on the side of the cursor (Sutton
&Barto, 1998),modifying the probabilities of upcoming cursormovements such that the
cursorwould bemore likely to go toward the target if the classificationswere correct. The
resulting probability statistics can then be understood as a user model, describing the
user’s preferred behavior of the cursor. This description’s accuracy is then reflected in
the user model’s success in enabling effective, goal-oriented control of the cursor.

Performance was operationalized as the number of cursor movements required to
reach one target. Because even a completely randomly moving cursor would eventually
reach the target, three conditions were distinguished: random, online, and “perfect.” In
the random condition, no reinforcement took place and the cursor merely moved ran-
domly. In the online condition, the cursor was reinforced based on the classifications of
the classification system. The perfect condition was simulated: the cursor already knew
the location of the target and reinforced itself with 100% accuracy, although it did pro-
ceed to move probabilistically. This condition represents the best possible performance
given the constraints of the grid and the cursor’s movement algorithm.

The offline calibration datawere gathered on a 4×4 grid. The online, closed-loop sys-
tem was tested on both a 4×4 grid, and on a theretofore unseen 6×6 grid. Performance
results are summarized in Fig. 5.3.

On the 4×4 grid, a randomlymoving cursor required an average of 27movements. In
the simulated condition of perfect performance, this number dropped to 10. When the
cursor was reinforced online, an average of 13 stepswas required—a significant improve-
ment compared to the random condition (P < 0.025) bridging the gap toward the perfect
condition by 82%.
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Figure 5.3: Performance measure distributions for nonsupported, online, and perfectly rein-
forced cursormovements on the two online grid sizes. (a) Performance on the 4×4 grids. (b)
Performance on the 6×6 grids. All differences between the three conditions are significant
(P < 0.025). Whiskers cover±2.7σ.

On the 6×6 grid random cursor movement required 90 steps on average, and 14 in
the perfect-accuracy simulation. Even though no training data had been gathered from
the 6×6 grids, the online system bridged this gap by 88%, requiring 23 movements on
average (P < 0.01).

On both grids, the online performance also differed significantly from the perfect per-
formance (P < 0.025).

Movie S3 shows a number of online cursor movements and illustrates the adaptive
paradigm’s responses.

Online application thus significantly increased the goal congruency, confirming that
the signal the classification system focused on was situationally relevant. Although the
cursor only made binary interpretations of the classifier’s output, this output was con-
tinuous: a scale, from −1 to +1, correlating to the movements’ degree of goal congruency.
This is illustrated in Fig. 5.1b (lower curve). The classifier output differs significantly (P <
0.001) between the classes used by the classifier. In between, the classifier output scaled
linearly with angular deviance, as fitted by a linear regression model using each group’s
mean angular deviance as predictor (b = 0.0035, F = 295.42, P < 0.001; R2 = 0.76). See SI
Appendix, Table S4 for further comparisons.

Even though the linearly scaled information was not taken into account, binary clas-
sifications still resulted in a graded usermodel, describing the appropriateness of the dif-
ferent cursor movements depending on the intended target’s position. To illustrate this,
Fig. 5.2a visualizes the cursor’smovements over a grid during one of the online runswith
the target in the southwest corner. Fig. 5.2b shows how the individual directional prefer-
ences/probabilities in the usermodel are updated after every cursormovement, showing
the progression toward a clearly identified preference for the southwest corner. Fig. 5.2c
illustrates the mean final user models for all participants for the four different target po-
sitions. It is clear that the user models accurately represent the intended target position.
The mean final user model across all participants is illustrated in SI Appendix, Fig. S4,
with statistics in SI Appendix, Table S2. SI Appendix, Fig. S9 shows onemore example of
online cursor behavior.
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5.4 Discussion

We have demonstrated that binary classifications of subjective interpretations of cursor
movements can be aggregated into a user model reflecting, in the given context, direc-
tional intent. Based on this model, the cursor was effectively guided toward the target.
Participants were not aware of their influence on the cursor. Although not used explic-
itly in this study, analysis shows that more fine-grained informationmay be available in
the elicited responses, encoded in the linear dependency of the response on the angular
deviance.

An approach combining independent component analysis (ICA, Bell & Sejnowski,
1995; Makeig et al., 1996), supervised machine learning, and higher-order statistics
not only gave insight into the individual single-trial responses, but also enabled error-
minimized source localization and signal back-projection aswell as real-time single-trial
analysis. These characteristics could be used to validate the classification system as well
as the user model. Firstly, the online application of the classification system increased
the paradigm’s goal congruency to near the optimum: The gap from no reinforcement to
optimal reinforcement could be bridged by over 80% using the presented classification
system, both on the 4×4 grid and on the theretofore unseen 6×6 grid. This significant re-
duction in the number of steps required to reach a target provides evidence that the clas-
sification of brain responses following a cursor movement was based on task-relevant
information: Each movement indeed elicited a response enabling the identification of
subjective directional preferences.

Secondly, the neurophysiological analysis, based on the classification system’s filter
set, revealed that the underlying signal predominantly stemmed from the mPFC, and re-
flected the experimental paradigm’s logic. Further interpretation of the neurophysiologi-
cal response points to its likely generator process. Given the signal’s time course, its local-
ization, and the evoking stimuli, the response is in line with the framework of predictive
coding. We hypothesize that in the present study, participants consistently predicted—
for lackof information thatwould indicateotherwise—that thecursorwouldperformthe
only action that would have been appropriate, i.e., that it wouldmove in the direction of
the target. Interestingly, however, our findings imply an extension of the general frame-
work of predictive coding. A focus on “negative” signals is central to current interpreta-
tions andfindings related topredictive coding: Indications of discrepancies, of prediction
errors, are seen as central to learning by reinforcement, in turn explaining the large range
of rich human behavior and intelligence (Hawkins & Blakeslee, 2007). The sensitivity of
the ERP amplitude to the quality of the cursor movements, however, seems to indicate
that neural activity generated within the mPFC provides a range of graded responses to
both positive and negativemovements. In this context, these reflect the observer’s direc-
tional preferences, modeling an important, task-relevant factor of their subjective cogni-
tion. This points to a continuous response range within the mPFC that not only detects
deviations from a predicted event to adapt future behavior, but also confirms correct pre-
dictions to reinforce adequate behavior or sharpen perceptive hypotheses. This activity
thus reflects complex aspects of the operator’s cognition, and can be highly informative
for external systems that have access to it.

Taken together, these resultsdemonstrate effective cursor control through implicit in-
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teraction: Whileparticipantswereunawareofhavingany influenceon the cursor, thepre-
sented stimuli elicited informative neuronal responses that allowed the system to estab-
lish a usermodel fromwhich the participants’ intentions could be derived. The computer
system adapted its behavior to fit thismodel—thus becoming neuroadaptive. The neces-
sary information could also have been provided explicitly and volitionally, but conscious
interpretation can involve any number of additional considerations and processes (e.g.,
resolving competing interpretations from different judgment strategies), and would re-
quire an explicit decision aswell as its translation into a command to inform themachine.
Direct access to such interpretations circumvents these time-consuming and effortful
steps, proving advantageous even with simple binary decisions, as implemented here.
Communicating more fine-grained information, as seems also to be available, would be
even more difficult using traditional input techniques, but equally effortless using the
method presented here. As such, neuroadaptive technology based on passive BCI by-
passes the communication bottleneck present in traditional HCI, effectively widening it
by allowing interaction to take place through implicit channels. This decreases the asym-
metry present in current HCI paradigms.

At this point, we would like to speculate about possible implications and future ex-
tensions of the findings and the line of thought presented here. Our current method es-
sentially quantified subjective directional preferences, supplying a single value that in-
dicated, in the given context, whether a person interpreted a single cursor movement as
being supportive of reaching the target or not. This can be seen as a real-time assessment
of subjective satisfaction/dissatisfaction with the presented probe stimulus, thus allow-
ing the generation of a user model representing subjective intent. Interestingly, one can
imagine a computer system that intelligently decideswhat probe to present, to gather in-
formation. A systemwith an incomplete user model, for example, could present a probe
to gauge the user’s response and thus gather the missing information. Such an act of ac-
tive learning (Settles, 2009)would invert the traditional HCI cycle: The probemay be un-
derstood as a command—a request for feedback—direct from the machine to the user’s
brain, inducing its own interpretation, which results in themachine indeed receiving the
requested feedback. In the demonstration presented here, each cursormovement served
as such a probe, and allowed the gradual development of a user model, but a more intel-
ligent selection of probes may improve the system’s efficiency.

With such a fundamental process as for example predictive coding underlying a neu-
roadaptive system, a large scope of potential applications can be imagined. Any process
or path that can be divided into a sequence of one-dimensional (e.g., positive–negative)
responses could potentially be covered implicitly (SI Appendix, Fig. S10). And, as human
predictive coding shows, a great deal can be achieved based on such information using,
for example, the relatively simple process of reinforcement. The 2D grid used here could
be replaced by any n-dimensional space representing different system parameters. It is
tempting to envision how such neuroadaptive systems could transformwork and leisure
activities in everyday settings. An implementation analogous to the current demonstra-
tion (but going beyond the currently presented results), using affective interpretations
rather than cognitive ones (Zander & Jatzev, 2009), could be an adaptive, open-ended
electronic book. While reading, the reader would interpret the story as it unfolded, thus
automatically responding to events with a detectable affective state. Based on what the
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reader apparentlyfinds enjoyable, a neuroadaptive systemcould then change the content
of subsequent pages. With a sequence of such adaptations, the story is gradually steered
in the reader’s preferred direction. However, the reader would not actively be directing
the story, and would not even need to be aware of the system’s existence.

Similarly, the general method demonstrated here is of value to neuroadaptive exper-
imental paradigms. Such paradigms can use the real-time feedback supplied by the clas-
sification system to adapt to individual strategies, rather than enforcing a uniform logic
over all participants. Probe stimuli can be used to first inspect the subjective relevance of
different experimental aspects, for example, and then adaptively go into detail, present-
ing more fine-grained nuances of these aspects, to model how they influence the brain
dynamics of that individual.

A word of caution is in order. Neuroadaptive systems can be said to be systems with
an agenda, having a goal of their own (Fairclough, 2009). By autonomously initiating
each interaction cycle using a specifically selected probe stimulus, they would be in a po-
sition to “guide” the interaction such that specific information can be gathered, and to
change the interactive experience based on that or other information. When designing
such systems, care should be taken that this agenda is not adverse to the user’s intention.
Furthermore, the fact that it can rely on automatic, unconscious responses represents a
potential danger to informed consent. Users should always have access to full informa-
tion concerning the system’s goals and actions.

The benefits of closed-loop neuroadaptive technology, however, may be vast. It en-
ables experimental paradigms to model and adapt to relevant individual aspects in real
time. For technology in general, this concept could represent a paradigm shift in that it
skips translational effort, grants the machine initiative and agency, and may even func-
tion outside of conscious awareness. This offers designers the prospect to completely
rethink the notion of interaction and the possibilities offered by it. In almost a century
of neurophysiological research, a number of correlates of cognitive processes have been
identified in the EEG, some of which can already be detected in single trials using pas-
sive BCI methodology (as, e.g., Schultze-Kraft et al., 2016; Blankertz et al., 2011; Gerjets
et al., 2014; Chanel et al., 2009; Protzak et al., 2013; Zander & Kothe, 2011). We are
looking forward to investigating which of these could be meaningfully elicited and in-
terpreted to inform personalized user models, as per the concept of neuroadaptive tech-
nology presented here. Commercial systems and experimental paradigms specifically
designed for this type of implicit interaction—a cybernetic convergence of human and
machine intelligence—could offer new functionality and scientific resultswe cannot cur-
rently foresee.

5.5 Materials andMethods

5.5.1 Experimental Procedure and Setup

All participants were informed of the nature of the experiment and the recording and
anonymization procedures before signing a consent form. The Ethics Committee of
the Department of Psychology and Ergonomics at the Technische Universität Berlin ap-
proved the experiment and the procedures.
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Agray gridwas shownon a black background,with a red target node indicated in one
of the grid’s corners, and a red circular cursor visible on one of the nodes (Fig. 5.1a and SI
Appendix, Fig. S1). The cursor’s starting position on each grid was one node away from
the corner opposite the target’s, in a straight line to the target. In each trial, the cursor
moved from its current node to one of the adjacent nodes. A 1-s animation within the
cursor served as a countdown. The cursor would then instantaneously jump to the next
node, highlighting inwhite itsnewpositionand thegrid linebetween the twonodes. This
configuration remained visible for 1 s. Following that, the highlights disappeared and the
cursorwould remain at its newposition for 1 smore before the next trial. Movie S4 shows
animated stimuli as seen by the participant.

Throughout the experiment, participants were instructed to judge each individual
cursormovement as either “acceptable” or “not acceptable” with respect to reaching the
target, and to indicate their judgment bypressing either “v” or “b,” respectively, on a com-
puter keyboard using the index finger of one hand. These button presses were logged by
the system but were not used as input.

EEG was recorded using 64 active Ag/AgCl electrodes mounted according to the ex-
tended 10–20 system. The signal was sampled at 500 Hz and amplified using BrainAmp
DC amplifiers (Brain Products GmbH).

Participants first performed 5 blocks of 120 trials on grids of 4×4 nodes. If the target
had not been reached after 55 trials in one grid, a new gridwas started. Fifty-five is twice
themedian number of randommovements required to reach a target on a 4×4 grid. The
EEGrecordedduring thesefiveblocks served to calibrate the classifier, asdiscussedbelow.
In online sessions, this classifier was then applied to onemore block of 120 trials on 4×4
grids, and one last block of 120 trials on 6×6 grids. No maximum number of trials other
than the block’s length was set for the 6×6 online blocks.

During calibration blocks, the cursor moved randomly. During online application
of the pBCI, the directional probabilities were altered based on the classification of each
movement as either “correct” or “incorrect,” biasing the cursor to repeatmovements clas-
sified as correct.

A total of 19 participants participated in this study, with an average age of 25.4 y ±3.4.
Seven were female. All had normal or corrected to normal vision. The first 3 only per-
formed offline calibration trials, whereas the following 16 additionally performed online
trials.

Additional details are provided in SI Appendix.

5.5.2 Classifier
A classifier was individually calibrated on data from the initial 600-trial recording of ran-
domcursormovements. Movementswith an angular deviance of 0◦were labeled as class
1, andmovementswith an absolute deviance of 135◦ ormorewere labeled as class 2. A reg-
ularized linear discriminant analysis classifier was trained to separate classes (Blankertz
et al., 2011).

The open-source toolbox BCILAB (Kothe & Makeig, 2013) version 1.01 was used to
define and implement the pBCI. Features were extracted through the windowed means
approach, using the average amplitudes of eight sequential timewindows of 50ms each,
between 50 and 450ms after each cursor movement (Blankertz et al., 2011). For this fea-
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ture extraction, the data were first resampled at 100 Hz and band-pass filtered using fast
Fourier transform from 0.1 to 15 Hz. Ensuring that the features were independent and
identically distributed, a 5×5-times nested cross-validation with margins of 5 was used
to select the shrinkage regularization parameter, and to generate estimates of the classi-
fication system’s online reliability.

Additional details are provided in SI Appendix.

5.5.3 Identifying Scalp Projections
FollowingHaufe et al. (2014), lineardiscriminant analysis (LDA)patternsA = (aj)j were
generated for each participant from the LDA filtersM = (mj)j originally used for online
classification by conjugation with the features’ covariance matrix C : A = CMC−1.
Spatial interpretation of these patterns for each time window reflects a mixture of scalp
activations related to discriminative source activity Â = (âj)j and class-invariant noise
representationN , withA = Â+N . The latterwasfiltered out byweighting eachpattern
entry aj with the correlation of its associated feature activity vector over trials Fj to the
binary vectorof true class labelsL : âj = corr(Fj, L)·aj The resulting correlatedpattern
Â = (âj)j can be visualized by topographic plots for each time window, as in Fig. 5.1d.

Additional details are provided in SI Appendix.

5.5.4 Localization
The classification model used was a multivariate approach, an LDA, optimized for the
discriminability of the extracted features between classes. Each feature represents data
at a single sensor for one of the chosen timewindows. Hence, applying themethodology
recently introduced by Haufe et al. (2014) interprets the classification model at sensor
level, and reveals further insight into the relevant underlying processes.

To identify the sources producing the signal, the backward model, i.e., the LDA filter,
was combined with an ICA. The ICA unmixing matrixW = (I1, I2, · · · , In) was deter-
mined onmanually cleaned data for each participant by using the Adaptive Mixture ICA
(AMICA) Toolbox (Palmer, 2012), such that s = Wx, where s represents the source ac-
tivation related to a given scalp activation x. For each time window, the relevance for
classificationRi of each independent component Ii can then be determined by distribut-
ing the LDA filter weights to the independent components viaW , weighted by two fac-
tors. The first factor compensates for the amplitude alignment of the LDA filter weights
to the feature amplitudes. It is determined by calculating the variance over trials of the
feature F̂ i extracted from the time series of the independent component: V i = var(F̂ i).
A second weight is determined for filtering out noise representations by weighting the
independent components with the correlation of their feature activity to the true class
labels (as described above for electrode activity): Ri = Vi ∗ corr(F̂ i, L) ∗WM .

To then localize these sources, equivalent dipolemodels that describe themost likely
position of the source in a standard headmodel were identified for selected components
by using the EEGLAB plug-in DIPFIT 2.x (Oostenveld & Delorme, 2003). Components
were selected by a threshold criterion for residual variance (RV) of the dipole model (RV
< 0.15) and visual inspection of the activation spectra, time courses, and scalp topogra-
phies. Only dipolar components clearly reflecting cortical, ocular, or muscular activity
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were included in the analysis. For every time window, each of the 371 resulting dipoles
wasweighted by the relevanceRi of its associated independent component. The areas of
high relevance were then described by a weighted dipole density plot using the EEGLAB
plug-indipoleDensity (Miyakoshi, 2003)byplotting thedipoledensityper cubicmillime-
ter weighted by the relevance Ri of each included dipole with a smoothing kernel of 12
mm.

Movie S2 shows the results of this analysis for the full time courseunder investigation.
Theabove-mentionedprocess of dipole selectiondidnotmarkedly influence the anal-

ysis. Compared with all 1,191 dipoles and averaged over the 8 time windows, the 820 re-
jecteddipoles (68.8%) carried 7.5%of theweights distributedby the classifier. Relative to
all 1,191 dipoles, a total of 87 dipoles received a relevance weight larger than an SD of 1 in
at least one of the time windows. These 7.3% of dipoles carried 77.8% of the total weight
distributed by the classifier. Four of these highly weighted dipoles (4.6%) were rejected
in theprocess explained above andnot included in the analysis. These four represent 1.7%
of the weight included in the analysis. Three belonged to the same subject.

Additional details are provided in SI Appendix.

5.5.5 PerformanceMeasures and Statistical Methods

Cursor performance was operationalized as the number of movements required to reach
the target. Only completed grids are included in the analysis, i.e., either when the target
was hit or themaximumnumber of trials was reached. Online, this latter event occurred
a total of seven times to seven participants on the 4×4 grids, and to two participants on
the larger grids. Out of 120 cursor movements per grid size per participant, this resulted
in 88 pBCI-supported target hits for the smaller grid, and 47 for the larger one.

Random cursor movement data are nonparametrically distributed and vary greatly.
Therefore,weused a resampling approachwhere the available sample of pBCI-supported
measures was repeatedly compared with a new random sample of the same size of non-
supported performance measures, using a Wilcoxon rank-sum test. Out of 50,000 such
comparisons, 98% of tests were significant atα = 0.025 for the smaller grid; for the larger
grid, 100% of tests were significant at this level.

The perfect performance was simulated by automatically reinforcing the cursor as in
the online sessions, with all movements with an angular deviance of less than 45◦ rein-
forced positively and all others negatively. The same procedure as above yielded signif-
icant differences to the pBCI-supported measures for both the 4×4 grid (99.9% of tests
significant at α = 0.025) and the 6×6 grid (100%).
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Abstract Implicit cursor control basedonmedial prefrontal cortex (mPFC)activitywas
demonstrated in 2016 (Zander et al., 2016): neuroadaptive technology based on passive
brain-computer interfacing enabled participants to essentially steer a cursor towards a
highlighted target without these participants being aware of doing so. Such forms of im-
plicit interaction can potentially enable a wide range of neuroadaptive applications, de-
pending on which cognitive and affective processes can be reliably targeted by the clas-
sifiers that decode the corresponding brain activity. The mPFC activity in question was
assumed to reflect predictive processes influenced by top-down biases informed by the
participants’ subjective intentions to reach the target. However, since the targetwas visu-
ally highlighted, it is conceivable that perceptual processes, whichmaybe agnostic to the
meaning of the visual stimuli, played a role aswell. Here,weuse classifier visualisation in
3D source space and an adapted experimental design to disentangle the contributions of
perceptual salience- and subjective valence-related processes in implicit cursor control.
We show that the two processes are both present in the data. The visualisation method
allows them to be separated and localised in different cortical areas, with visual process-
ing primarily situated in parietal areas and valence-related processing predominantly in
themPFC. This also demonstrates that neuroadaptive technology can indeed access sub-
jective valence-related processes for implicit control.
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6.1 Introduction

A brain-computer interface (BCI) allows a measurement of a person’s brain activity to
be interpreted in real time and used as input to a computer, essentially providing a new
communication channel that does not depend in anyway onmuscular activity (J. R.Wol-
paw&Wolpaw, 2012). While the focus of BCI research has long been onmedical applica-
tions, for exampleofferingparalysedpatients theability to communicatewith theoutside
world or control parts of their environment (Birbaumer, 2006; Vansteensel et al., 2016),
the scope of BCI technology has significantly widened in roughly the past decade with
hard- and software solutions now being offered even to the general public (Ienca et al.,
2018). Of particular note is the category of so-called passive BCI systems (pBCI; Zander &
Kothe, 2011; Krol, Andreessen, & Zander, 2018), which are different from other categories
of BCI in that they derive output from brain activity that was not specifically modulated
for communicationor control. Instead, pBCIdecodes aperson’s naturally occurringbrain
activity, thus revealing aspects of their naturally occurring mental states. This decoded
implicit input can potentially be obtained without the user’s explicit voluntary cooper-
ation (Schmidt, 2000; Rötting et al., 2009; Zander et al., 2014). As such, a pBCI could
for example allow a smart car to detect its driver’s state of drowsiness and automatically
pull overwithout requiring the drowsy driver tomake any explicit decisions (Zander, An-
dreessen, et al., 2017), or allow adaptive systems to respond to different levels of their
users’ mental load without adding any additional load to it (Yuksel et al., 2016; Ewing et
al., 2016; Zander, Shetty, et al., 2017). Such systems using implicit input in order to adapt
themselves, e.g. for control or interaction, are referred to as neuroadaptive technology
(Zander et al., 2016).

In the context of human-computer interaction, the operator’s naturally occurring
brain activity is largely dependent on current task parameters. Neuroadaptive technol-
ogy can automatically adapt these parameters in order to support the human operator,
but conversely, it can also pro-actively change these parameters in order to induce spe-
cificmental states, or to learn from the brain activity resulting from specific changes. For
example, rather than increasing or decreasing automation levels in response to rising or
lowering levels ofworkload (e.g., Byrne&Parasuraman, 1996), a systemcould actively cy-
cle through a set of possible task configurations in order to evaluate which produces the
optimal level of load. Thismethod is called cognitive probing (Krol, Haselager, & Zander,
2020).

In an earlier work, we demonstrated how cognitive probing can be used to enable
implicit cursor control (Zander et al., 2014, 2016). Where traditional forms of BCI can en-
able users to steer a cursor by actively producingdifferentmental states (most commonly,
this ismotor imagery; Pfurtscheller&Neuper, 2001), the implicit cursor controlparadigm
started with a cursor that was moving autonomously, but randomly, across the nodes of
a grid. One of the corners of this gridwas visually highlighted to represent the target, i.e.,
the supposed goal of the cursor’smovements. Participants were instructed to judge each
individual cursormovement as being either ‘appropriate’ or not with respect to reaching
the indicated target. The results showed significant differences between (appropriate)
cursormovements going towards the target, and (inappropriate)movements leading the
cursor away from the target. Furthermore, this difference was classifiable with an esti-
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mated single-trial accuracy of 72%. We could thus use this classifier output in real time
as implicit input, in order to reinforce the initially random cursor movements to gradu-
ally guide the cursor towards the target. When brain activity indicated that a movement
was appropriate, the probability of moving again in that same direction was increased,
and conversely, the corresponding probability was decreased after each movement that
was classified as inappropriate. This produced significantly goal-directed behaviour of
the cursor, purely on the basis of brain activity elicited by each and every movement. A
similar conceptwas demonstrated by Iturrate et al. (2015). We emphasise, however, that
in Zander et al. (2016), the participants were unaware of having any influence on the cur-
sor’s movements, hence this being an example of implicit control.

An analysis of the signal underlying classification in this implicit cursor control ex-
periment revealed the relevant cognitive processes to stem predominantly from the me-
dial prefrontal cortex (mPFC). In particular, inappropriate movements elicited a strong
negativity visible at channel Fz around 180 ms. This and various additional findings led
to these results being interpreted within the framework of predictive coding: the brain’s
automatic, constant prediction of future sensory input in order to optimise behaviour
by minimising prediction errors (Friston, 2010; Clark, 2013). Processes with a similar
time course, spatial distribution, and cortical origin have been identified to be involved
in the realisation of having committed an error (Falkenstein et al., 1990, 2000), receiving
feedback concerning previous errors (Miltner, Braun, & Coles, 1997; Holroyd, Nieuwen-
huis, Yeung, & Cohen, 2003), receiving feedback concerning erroneously executed com-
mands (Ferrez & Millán, 2008; Mousavi et al., 2017), and observing others commit er-
rors (Miltner, Brauer, Hecht, Trippe, & Coles, 2004; Van Schie, Mars, Coles, & Bekkering,
2004). Theirmanysimilaritieshave resulted in theassumption that thesenegativities are
generated by the same system, but under different circumstances; in particular, the error-
related negativity is said to followactively committed errors,while the feedback-related neg-
ativity follows the display of performance-related feedback (Walsh & Anderson, 2012).
An account based on reinforcement learning has therefore been postulated which holds
that a generic error-processing mechanism exists, in which changes in the dopaminer-
gic input to the anterior cingulate cortex (ACC) indicate whether or not predictions have
been met (Holroyd & Coles, 2002; Nieuwenhuis, Holroyd, Mol, & Coles, 2004). At the
scalp, this activity is then reflected as a negativity in case of events being worse than pre-
dicted, and/or a positivity when events are better than predicted (Holroyd, Pakzad-Vaezi,
& Krigolson, 2008).

Therefore, we hypothesised that participants in the implicit cursor control paradigm
predicted that the cursor would move towards the target, with correct movements to-
wards the target (i.e., positive feedback) yielding the known positivity and incorrect
movements the corresponding negativity. In the absence of any informative cueswith re-
spect to upcoming cursormovements, the participants’ intentions or preferences pertain-
ing to the cursor movements thus determined how each movement was predicted and
interpreted. As such, higher-order cognitive functions (here: intentions or preferences)
could be inferred from lower-level processes (predictive error signals). Such lower-level
processes may be difficult to consciously control, with potentially far-reaching implica-
tions for the privacy of thought (Mecacci & Haselager, 2019b).

The feedback-related negativity is generally considered to be a binary signal reflect-
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ing the processing of positive or negative outcomes, influenced by motivational involve-
ment but not by reward or error magnitude (Yeung, Holroyd, & Cohen, 2004; Hajcak,
Moser, Holroy, & Simons, 2006). Interestingly, the negativity observed in the implicit
cursor control paradigm showed a linear dependency on the ‘appropriateness’ of the cur-
sor movements, as measured by their angular deviance from a straight line towards the
target. This hinted at the involvement of a cortical process that not only signals devia-
tions from predicted events in order to improve future behaviour, but in fact confirms
or rejects predictions in a graded way in order to e.g. reinforce adequate behaviour or
sharpen perceptive hypotheses. Combined with the above-mentioned assumption that
these predictions are informed by higher-level cognition, this process would then essen-
tially reflect a subjective degree of goal attainment.

However, this interpretation assumes that there indeed was no other information
available—even false information—to base a prediction on. As mentioned, in the im-
plicit cursor control experiment the desired target was visually highlighted, thus poten-
tially making this a form of information: it is visually more salient than other nodes in
the grid, and thus, it is conceivable that perceptive processes would interpret this as a
reference point regardless of its valence. It is conceivable that a ‘default’ prediction is for
one salient object (the cursor) to move towards another salient object (the target).

In light of this, a more nuanced perspective has been suggested to interpret the de-
tected event-related potentials (ERPs) (Cockburn & Holroyd, 2018). Holroyd and col-
leaguesmake a distinction between surprise- or salience-related signals on the one hand,
the response of which ismodulated by the expectancy of events (Holroyd&Coles, 2002),
and the reward prediction error signal on the other hand, which respondsmost strongly to
unexpected (i.e. surprising, salient) events but whose sign is inverted for positive versus
negative events (Sambrook & Goslin, 2015). This has primarily been investigated in the
context of tasks where a positive event would for example indicate correct performance
or monetary reward on a timing or gambling task, but may also apply to implicit cursor
control. In short, while the different valence of movements towards and away from the
target should result in a classifiable signal, the visual salience of these samemovements
towards or away from the highlighted nodemay confound these results. It thus remains
an important unanswered question to what extent the signal that allowed classification
may also have “[manifested] as a specific interaction between outcome valence and out-
come probability” (Heydari &Holroyd, 2016), or indeed, may be explained exclusively by
one or the other.

Tobe specific,weunderstand ‘salience’ in the context of implicit cursor control to rep-
resent the perceptual (here: visual) properties of the cursor movements relative to the
visually salient point of the grid. ‘Valence’ on the other hand is the meaning imparted
upon these movements by the participants as informed by the instructions, leading par-
ticipants to see some movements as ‘appropriate’ (positive valence) and others as ‘inap-
propriate’ (negative valence). Because salience and valence of the cursor’s movements
were coupled in the original implicit cursor control experiment, it was not possible for
these two factors to be differentiated. We therefore conducted a similar but adapted ex-
perimentwhere the visual stimuli and the participants’ taskwere designed to allow such
a differentiation to be made. In the updated design, visual stimuli were left constant be-
tween two conditions that differed only with respect to the given instructions. These in-
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structions manipulated the valence of the visually identical stimuli.
If processes related to visual saliencewere the sole or primary cause of the effects seen

in the original paradigm, we should see the same effects in this experiment in both con-
ditions. Conversely, if valence-related processes were primarily driving the results, we
would expect to see an inverse pattern between the two conditions. In case both of these
dimensions play a role, as ismost probable, the updated experimental design allowsus to
compare valenceparameterswhile isolatingor controlling for visual parameters, andvice
versa. This would allow us to identify which cortical areas primarily contribute to these
two aspects. Here,wewould expect salience to be localised primarily in occipital/parietal
regions, and valence in the mPFC as per the original results.

Aside from further elucidating the neurophysiology of error- and feedback-related
processing, it is important to investigate salience- and valence-related processes in the
context of neuroadaptive technology. A classifier that responds only to physical (e.g. vi-
sual, salience) parameters while being agnostic to more subjective cognitive processes
may have a limited number of applications in the real world. On the other hand, when
a system does have access to its user’s subjective (valence-related) processing, caremust
be taken that both this access and the gathered information is handled with due care—
among other things, keeping inmind the necessity for informed consent and the value of
privacy. See Krol et al. (2020) for a discussion on the ethical implications of some forms
of neuroadaptive technology, which are all the more pertinent when subjective interpre-
tations can inform the adaptations, as opposed tomore ‘neutral’ cognitive processes such
as perception.

6.2 Methods

6.2.1 Participants and Set-Up

A total of 24 participants participated in the study (10 male; 22 right-handed; mean age
26.6 ± 3.9). All signed a written informed consent form. 64-channel EEG was recorded
at 5000 Hz using BrainAmp DC amplifiers (Brain Products GmbH, Gilching, Germany),
with active electrodes arranged on actiCAP electrode caps according to the extended in-
ternational 10-20 system, referenced to FCz. Participants were seated in front of a 27”
computer display placed approximately 1maway from them. Five participantswere later
excluded from the analysis due to data quality or recording issues, leaving 19 datasets (9
male; 17 right-handed; mean age 26.6± 4.3).

6.2.2 Experimental Paradigm

The experimental paradigm largely followed the original implicit cursor control experi-
ment (Zander et al., 2014, 2016), but with adaptations to allow salience and valence to
bemanipulated as independent variables. This required a different grid layout, shown in
figure 6.1.

The original experiment used a square gridwith one of the corners bearing particular
relevance (e.g., the target). On such a grid there is always an opposite corner that may,
inversely, be interpreted as having particular relevance as well, being the furthest away
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Figure 6.1: The grid layout as seen by the participants, with the cursor at one of four possible
starting positions. The centre node was always visually highlighted.

from said target. In other words, instructions that assign positive or negative valence
to one corner, may be mentally translated as assigning inverted valence to the opposite
corner instead. Because of this, we instead used a larger 7 × 7 grid allowing us to place
the referencenodeat the centre, and removed the cornernodes to eliminate any ‘opposite’
candidates. All grid nodes were grey, open circles connected by grey lines. The reference
nodewas a red, open circle. The cursorwas a red, filled circle, somewhat smaller than the
nodes. The backgroundwas black.

Starting two nodes away from the centre in a horizontal or vertical line, the cursor
wouldmove randomly to any of the up to eight adjacent nodes at a rate of onemovement
every three seconds. Eachmovement first consisted of a 1-second animation of a growing
white ‘ghost’ circle inside the cursor’s red circle. This allowed the participants to predict
the timing of the upcomingmove. Upon reaching the same size as the cursor’s red circle,
the ghost cursor instantaneously moved to the next node while the red cursor remained.
The grid line between these two points was highlighted in white, clearly indicating the
movement between the previous and new cursor positions. This remained visible for 1
second. Following this, the red cursor instantaneously moved to the new position while
the white elements disappeared. The red cursor remained at this position for 1 second
before the next anticipatory animation started. (A video of this animation is available in
Zander et al., 2016.)

In order to manipulate valence, there were two conditions: an ‘attraction’ and a ‘re-
pulsion’ condition, defined relative to the reference node in the centre. In the attraction
condition, participants were instructed that the cursor should reach the centre node, and
that reaching it should be seen as a success. If the cursor had not reached the centre af-
ter 50 movements, this was to be seen as a failure. These instructions reflected those of
the original experiment. In the negative condition, the instructions were reversed: the
cursor should not reach the target, and was given 25movements to either fail or succeed.
The difference in the maximum number of movements was to even out the number of
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successes and failures per condition. After success or failure in either case, the grid was
restarted with a different cursor starting position. The order of the two conditions was
counter-balanced across participants.

The two conditions inverted the valence of the otherwise visually identical stimuli:
what was ‘appropriate’ in one condition was ‘inappropriate’ in the other. Participants
were instructed to observe each cursor movement and label it as either ‘appropriate’ or
‘inappropriate’ given the current condition through a button press before the next move-
ment occurred, i.e. within three seconds. Speed was not emphasised. Participants were
given no explicit instructions as towhat exact criteria to use for each judgement, but they
were told that each judgementwas to bemade for the individual cursormovement, inde-
pendent of the larger history of cursor movements. These individual cursor movements
were the unit of analysis in this experiment.

Participants observed and evaluated a total of 800 cursor movements per condition
for 1600movements in total. Self-paced breaks were given between grids.

The cursor moved randomly throughout the experiment. There was no condition us-
ing online implicit cursor control.

6.2.3 Independent Component Analysis
Using EEGLAB 14.1.2b (Delorme & Makeig, 2004), the raw EEG data was subsampled
to 250 Hz and band-pass filtered between 1 and 100 Hz. Channels were rejected using
clean_rawdata. Removed channels were spherically interpolated, and the data was re-
referenced to the commonaveragewhilemaintaining full rankbyfirst re-inserting the all-
zero reference channel (Miyakoshi, 2017). After manually removing sections of the data
highly contaminated by artefacts, two passes of independent component analysis (ICA;
Makeig et al., 1996) were performed. A first pass yielded reliable identification of eye-
related independent components (ICs), which were then removed to allow automated
cleaning of the data without this algorithm erroneously identifying eye-related activity
as noise. With noise sections identified, these were removed from the earlier dataset still
containing eye activity, and a second pass of ICA yielded the decomposition used for fur-
ther analysis.

The ICA algorithm used was AMICA (Palmer, 2012), stopping either when conver-
gence was reached or after 2000 iterations. The automated cleaning algorithm, de-
scribed in more detail by Gramann, Hohlefeld, Gehrke, and Klug (2018), first filtered the
data between 1 and 40 Hz, and took the absolute value of the Hilbert transform of each
channel. It then looked at 1-second non-overlapping time segments, and first removed
any segmentwhere aflat line occurred formore than 100ms. Following this, all segments
were ranked by their mean absolute amplitude across channels, their standard deviation
across channel means, and their Mahalanobis distance from a distribution spanning all
segments using the channel means as coordinates. The top 10% of segments sorted by
their mean rank, plus a 500-msmargin on either side, were then removed from the data.

The resulting ICs were dipole-fitted using DIPFIT 2.x (Oostenveld & Delorme, 2003)
matched to an MNI average head model. The EEGLAB plug-in ICLabel (Pion-Tonachini,
Kreutz-Delgado, &Makeig, 2019) was used to identify components. Only ‘brain’ compo-
nentswere kept, defined ashaving a residual variance of less than 15%anda ‘brain’ proba-
bility of at least 67%. Non-brain components were removed. For a cluster inspection, the
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remaining brain ICswere clustered based on their dipole positions (relativeweight in the
preclustering array: 10), ERP activities (weight 1), and scalp maps (weight 1). Clustering
was done using k-means producing 15 clusters, with an outlier threshold at 3 standard
deviations.

6.2.4 Classification
The experiment essentially resulted in 2×2 classes: eachmovement could be categorised
by visual salience as either going ‘towards’ or ‘away’ from the centre, or by valence as ei-
ther being ‘good’ or ‘bad’ in the given condition. ‘Towards’ and ‘away’were definedusing
themovements’ angular deviance from a straight line towards the centre. For example, a
movement with an angular deviance of 0◦ goes directly towards the centre; a movement
with anangular deviance of180◦moves in a straight line away from the centre. Following
calculations regarding class separability depending on different definitions of ‘towards’
and ‘away’, done on the first eight participants (Krol, Pawlitzki, Mousavi, Andreessen, &
Zander, 2019), movements having an angular deviance of≤ 27◦ were labelled as going
‘towards’ the target, while > 117◦ were ‘away’. The attraction condition thus contains
good-towards and bad-awaymovements, whereas the repulsion condition contains good-
away and bad-towardsmovements.

Classification was implemented using BCILAB (Kothe & Makeig, 2013). After down-
sampling the data to 100 Hz and band-pass filtering it between 1 and 15 Hz, we used
a windowed-means approach (Blankertz et al., 2011) taking the mean amplitude on all
channels in twelve non-overlapping 50-ms time windows ranging from 0 to 600 ms as
features. This large range was chosen to include both early perceptual and later seman-
tic processing. Linear discriminant analysis (LDA; Bishop, 2006) was used to calibrate
the classifier. Five-fold random cross-validation was used to estimate classifier accuracy.
Since all four classes were equalised by randomly eliminating trials from larger classes,
thiswhole procedurewas repeated five times and the reported values represent themean
across iterations.

We always classified one class of movements against one other. Within conditions,
thiswould thus be good-towards versus bad-away for the attraction condition (Att.), and
bad-towards versus good-away for the repulsion condition (Rep.). These classifications
combine both valence and salience factors. To separate them, four additional classifica-
tions were performed: good-towards versus bad-towards (TvT) and good-away versus
bad-away (AvA) to focus on valence differences between visually identical movements,
and good-towards versus good-away (TvA+) and bad-towards versus bad-away (TvA–)
to focus on the visual differences while controlling for valence.

6.2.5 IC RelevanceWeighting and Classifier Visualisation
The method described in detail by Krol, Mousavi, de Sa, and Zander (2018) was used to
obtain so-called relevance weights for each IC. In short, the channel-level spatial filter
weights produced by each classifier, representing the classifier’s backward model, were
first transformed into forward-model patterns (Haufe et al., 2014). These patterns repre-
sent the projected activity of the signals isolatedby the classifier. Using the unmixingma-
trix obtained from the ICA, these patternswere translated into source-levelweights, indi-
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cating, for each IC ineachof the classifier’s timewindows, towhat extent it contributed to
classification. These so-called relevance weights were normalised across time windows
within participants.

Given the dipolemodel fitted to each IC, the IC relevanceweights can be visualised in
3D source space. Using the dipoleDensity EEGLAB plug-in (Miyakoshi, 2003), each IC’s
position in the average brain volume was weighted according to its relevance to classifi-
cation. We then generated a weighted 3D kernel density plot containing these weights
for all participants in one figure, using a smoothing kernel of 10 mm. The scales in these
images are relative, as they intend to bring physiological rather than quantitative differ-
ences into focus.

6.3 Results

6.3.1 Behavioural Data

In the attraction condition, the cursor made an average of 28.4 ± 3.9 movements per
grid; in the repulsion condition, this was 19.0 ± 5.1 movements per grid. The defini-
tions used to define the ‘towards’ and ‘away’ classes (i.e. ‘appropriate’ and ‘inappro-
priate’ movements) resulted in a roughly similar total of 388 movements towards, and
343 away across conditions. Grand average reaction times for the button presses were
690 ± 153ms and 731 ± 175ms in the attraction and repulsion condition, respectively.
A within-participants permutation test with 10000 permutations found that 13 partici-
pants showed significant differences (α = 0.05, Bonferroni-corrected) in their reaction
times between conditions; in all these cases, the repulsion condition had longer reaction
times. For the other six, no significant differences were found. We furthermore investi-
gated reaction time differences between two groups of participants, separated by which
condition was presented first. The attraction-first group was shown the attraction con-
dition first, and the repulsion condition second; the repulsion-first groupwas shown the
repulsion condition first, and the attraction condition second. We performed this analy-
sis in order to detect or rule out any order effect. Permutation tests with 10000 permu-
tations revealed no significant differences between groups for each of the condition (all
p > 0.64).

6.3.2 Independent Component Analysis

Keeping only cortical components left on average 14.2 ± 4.3 ICs per participant. For an
impression of the distribution of these ICs and as a reference for the later classifier visual-
isation, these ICswere clustered using k-means clustering in EEGLAB 14.1.2b (Delorme&
Makeig, 2004)using the same information available to the classifier—theERPs and scalp
maps, each with weight 1—and the dipole locations, with weight 10, with the threshold
for outliers set at 3 standard deviations. Figure 6.2 shows both the dipole distribution
and the scalp maps of the clusters.
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Figure 6.2: Left: All 257 cortical ICs, colour-coded for each cluster, excluding 13 outlier ICs.
Right: Themean scalp maps of all 15 clusters, plus the outlier cluster.

6.3.3 Classification

Table 6.1 contains the cross-validated accuracy estimations for the six different classifi-
cation schemes, using only cortical ICs. Removing non-brain ICs reduced the classifica-
tion accuracy by a moderate 2.24 percentage points on average, a reduction which was
nonetheless significant in most cases following paired-sample t-tests (Att p = 0.300,
Rep p = 0.011, TvT p = 0.002, AvA p = 0.001, TvA+ p = 0.001, TvA– p = 0.003).
Still, classification accuracies for the vast majority of participants remained significantly
above chance. Since the number of trials for each class was equalised, chance level is at
50%. Classification rates that are significantly better than chance, adjusted for the num-
ber of trials (Müller-Putz et al., 2008), are indicated in the table.

Separation between the classes is significantly better for Att than for Rep (p < 0.001
using paired-sample t-tests). TvT does not significantly differ from AvA (p = 0.275),
nor does TvA+ from TvA– (p = 0.047). Att is significantly better than the four mixed-
condition classification schemes (TvT p < 0.001, AvA p < 0.001, TvA+ p < 0.001, TvA–
p < 0.001); Rep is significantly worse than TA+ (p = 0.001) and TA– (p < 0.001) but
does not differ significantly from TvT (p = 0.758) or AvA (p = 0.956).

Also here,we investigateddifferences between the attraction-first and repulsion-first
groups in order to detect or rule out any order effect. Permutation tests with 10000 per-
mutations comparing the accuracies of six classification schemes across groups revealed
no significant differences (all p > 0.26).

6.3.4 Single-Condition Classifier Visualisation

Figure 6.3 illustrates the source-localised relevanceweights for theAtt andRep classifiers,
as well as for the classifier from the original implicit cursor control experiment for com-
parison. These figures thus show which cortical sources contributed to the separability
of the classes within conditions. For increased sensitivity, each plot only includes partic-
ipants for whom the respective classifier was significantly above chance at α = 0.001.
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Participant Att Rep TvT AvA TvA+ TvA–
1r 85∗∗∗ 68∗∗∗ 63∗∗∗ 67∗∗∗ 80∗∗∗ 80∗∗∗

2a 66∗∗∗ 61∗∗∗ 57∗ 59 69∗∗∗ 69∗∗∗

3r 77∗∗∗ 64∗∗∗ 62∗∗∗ 55∗∗∗ 74∗∗∗ 74∗∗∗

4a 80∗∗∗ 75∗∗∗ 67∗ 67∗∗∗ 81∗∗∗ 81∗∗∗
5r 76∗∗∗ 68∗∗∗ 57∗∗∗ 59∗∗ 70∗∗∗ 70∗∗∗

6a 88∗∗∗ 74∗∗∗ 70∗∗∗ 77∗∗∗ 78∗∗∗ 78∗∗∗

7r 82∗∗∗ 66∗∗∗ 60∗∗∗ 62∗∗∗ 71∗∗∗ 71∗∗∗
8a 78∗∗∗ 60∗∗∗ 65∗∗∗ 61∗∗∗ 72∗∗∗ 72∗∗∗

10r 72∗∗∗ 61∗∗∗ 65∗∗∗ 70∗∗∗ 55∗ 55∗∗∗

11a 76∗∗∗ 66∗∗∗ 58∗∗ 57∗∗ 76∗∗∗ 76∗∗∗

13r 84∗∗∗ 65∗∗∗ 62∗∗∗ 61∗∗∗ 77∗∗∗ 77∗∗∗

14a 71∗∗∗ 56 66∗∗∗ 63∗∗∗ 68∗∗∗ 68∗∗

15a 86∗∗∗ 68∗∗∗ 67∗∗∗ 64∗∗∗ 79∗∗∗ 79∗∗∗

16r 69∗∗∗ 60∗∗∗ 59∗∗∗ 58∗∗ 73∗∗∗ 73∗∗∗

17a 78∗∗∗ 69∗∗∗ 65∗∗∗ 71∗∗∗ 68∗∗∗ 68∗∗∗

20r 85∗∗∗ 59∗∗∗ 66∗∗∗ 66∗∗∗ 73∗∗∗ 73∗∗∗

21a 69∗∗∗ 58∗∗ 56∗ 56∗ 69∗∗∗ 69∗∗∗

22r 82∗∗∗ 70∗∗∗ 61∗∗∗ 68∗∗∗ 76∗∗∗ 76∗∗∗

24r 59∗∗∗ 61∗∗∗ 63∗∗∗ 61∗∗∗ 71∗∗∗ 71∗∗∗
Mean 77 65 63 63 73 71

Mean sig. 77 66 64 66 74 71

Table 6.1: Classification accuracies (%) for the separability of the following classes. Att: to-
wards v away in the attraction condition, i.e. good-towards v bad-away; Rep: towards v
away in the repulsion condition, i.e. bad-towards v good-away; TvT: towards v towards
across conditions, i.e. good-towards v bad-towards; AvA: away v away across conditions,
i.e. good-away v bad-away; TvA+: towards v away with positive valence across conditions,
i.e. good-towards v good-away; TvA–: towards v away with negative valence across condi-
tions, i.e. bad-towards v bad-away. For the participants, a or r indicate that the attraction
or repulsion condition was presented first, respectively. Significance is indicated as * p<0.05,
** p<0.01, *** p<0.001. Mean sig. indicates the mean accuracy taking only those participants
with p<0.001.
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Condition: Original “attraction” equivalent; Zander et al. (2016)
Classes: Towards v away

Top 5% of dipoles carry 27.61% of the weight. Kurtosis: 16.33
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Condition: Repulsion, presented first
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Top 5% of dipoles carry 19.81% of the weight. Kurtosis: 7.85
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Condition: Attraction, presented second
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Condition: Repulsion, presented second
Classes: Towards v away
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Figure 6.3:Weighteddipole density plots showing the relevanceof cortical areas to a the orig-
inal implicit cursor control experiment’s classifier, b the Att classifier for participants who
saw the attraction condition first, c the Rep classifier for the same group, d the Rep classifier
for participants who saw the repulsion condition first, and e the Att classifier for the same
group.
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Since an effect is visible here depending on which condition was presented first, the
attraction-first and repulsion-first groups are separated accordingly.

Panel a shows the relevant areas for the original experiment’s classifier, equivalent
to the attraction condition in this study. Panel b and c show the relevant areas for the
current experiment’s attraction and repulsion condition, respectively, but only for those
participantswhosawtheattraction conditionfirst. Panelsd and e showthe repulsionand
attraction condition, respectively, for the remaining participants who saw the repulsion
condition first. Note that all five of these classifiers combine both salience and valence
dimensions.

For the attraction-first group, the relevant cortical areas for the Att classifier largely
overlap with the Att-equivalent classifier of the original experiment. There is a clear fo-
cus on the mPFC, a second focus on the centro-parietal region, albeit larger than in the
original experiment, plus anadditionalweaker focus localised in the right-lateral parietal
cortex. For the Rep classifier of the first group, these same three areas remain active, now
with a stronger parietal focus than for the Att classifier.

For the repulsion-first group, for bothAtt andRep classifiers, the samegeneral centro-
parietal area carriesmostweightwith virtually nodifference between the two conditions.

Interestingly, while participants within each of the two groups consistently showed
relevantactivations in the sameareas forbothconditions, thearea that almost exclusively
contributed to classification in the repulsion-first group, is virtually absent in any classi-
fier of the attraction-first group, and vice versa. Given this stark difference between the
two groups depending on the order of presentation, we separate the further analysis be-
tween the two groups. We will focus on the attraction-first group, as this group more
closely resembles the reference data with which we wish to compare the current results.
The same analysis for the repulsion-first group is provided in Section 6.3.7.

6.3.5 Event-Related Potential at Fz

Figure 6.4 shows the scalp ERP at channel Fz for the processed data, i.e., referenced to the
common average, with non-cortical contributions removed, and filtered between 1 and
15 Hz. The attraction condition (when presented first), on the left panel, reproduces the
result from the original experiment with a peak negativity following (negative-valence)
movements away from the centre node at around 180ms, versus a peak positivity at that
same time for (positive-valence) movements towards the centre.

The repulsion condition (when presented second), however, shows neither the same
nor the inverted pattern that would be indicative of salience-only or valence-only pro-
cesses, respectively, being involved in its production. Rather, at around 180 ms a nega-
tive deflection can be seen in both classes. This negativity is smaller than the negativity
seen in the attraction condition, with its mean amplitude holding the middle between
the attraction condition’s negativity and positivity.

Using permutation testswith 10000permutations, significant differences (p < 0.05)
between the curves are found consistently between 160 and 200ms in the attraction con-
dition. The repulsion condition shows no significant differences between the two classes,
towards and away.
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Figure 6.4: The grand average ERPs at Fz for the two conditions in the attraction-first group.

6.3.6 Valence- and Salience-Focused Classifier Visualisation
Figure 6.3, discussed above, shows the cortical areas contributing to the first two clas-
sifiers from Table 6.1, which include both salience and valence dimensions. The current
studywasdesigned to separate salience andvalence, as per the latter four classifiers inTa-
ble 6.1. TvT and AvA both classify visually identical stimuli, but with different meanings,
i.e., these classifiers focus on valence, whereas TvA+ and TvA– both classify visually dif-
ferent stimuliwith identicalmeanings, focusingonvisual salience. Because theweighted
dipoledensityplots indicating the contributing cortical areas for the twovalence-focused
classifiersTvTandAvAare largely similar,wehave combined themintooneplot, showing
the summeddistribution ofweights for both valence-focused classifiers in the attraction-
first group. The samewas done for the two salience-focused classifiers. The results are in
Figure 6.5. Figures for the separate classifiers are included in the supplement.

-30 mm -10 mm 0 mm +10 mm +30 mm -50 mm -40 mm -10 mm 0 mm +10 mm

0 mm +10 mm +30 mm +40 mm +50 mm

Condition: Combined (attraction first)
Classes: Towards v towards + away v away

Top 5% of dipoles carry 19.27% of the weight. Kurtosis: 5.34

-30 mm -10 mm 0 mm +10 mm +30 mm -50 mm -40 mm -10 mm 0 mm +10 mm

0 mm +10 mm +30 mm +40 mm +50 mm

Condition: Combined (attraction first)
Classes: Towards v away (good) + towards v away (bad)

Top 5% of dipoles carry 18.48% of the weight. Kurtosis: 3.57

0

+

0

+

a)

b)

Figure 6.5:Weighted dipole density plots showing the relevance of cortical areas to a the two
valence-focused classifiers TvT andAvA, and b the two salience-focused classifiers TvT+ and
TvT–, both for the attraction-first group.
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Whereas the classifierswhich combined valence and salience show three distinct cor-
tical areas contributing to separability, the valence-focused classifiers focus almost exclu-
sively on themPFC region. The salience-focused classifiers on the other hand, isolate sig-
nals fromall three regions identified earlier, but focus primarily on the central and lateral
parietal regions.

6.3.7 The Repulsion-First Group

Figure 6.7 shows the grand-average ERP at Fz for the repulsion-first group. The same
effects are visible as in Figure 6.5 of the attraction-first group, albeit less pronounced.
Following permutation tests with 10000 permutations, significant differences exist be-
tween 164 and 172ms in the attraction condition. Around that same time in the repulsion
condition, both classes showa slight negativedeflection,whereno significant differences
can be reported. Figure 6.8 shows the areas relevant to classification of the valence- and
salience-focused activity. Unlike in the attraction-first group, no differences can be re-
ported. Figures for the separate classifiers are included in the supplement.

6.4 Discussion

Wepresented an adaptation of the original implicit cursor control experiment (Zander et
al., 2014, 2016)whichallowedus toseparate twodimensions thatwereoriginally coupled:
salience and valence. Because they were originally coupled, it was unclear to what ex-
tent the reported resultsmay have been influenced by perceptual processing of themove-
ments, compared to the participants’ valence-related interpretation of each movement.
Here, stimuliwere kept visually constant across two conditions inwhich valencewasma-
nipulated. This allowed valence processes to be targeted by comparing visually identical
stimuli that had different valence, and perceptual (salience) processes to be targeted by
comparing visually different stimuli that had the same valence. We hypothesised that, if
the primary differences between the classes were to be valence-related, any effect seen
within conditions would be inversed between them. Alternatively, there should not be
any differences between the conditions if visual processingwas the primary generator of
such an effect.

The ‘effect’ in question can be most prominently seen in the ERP at channel Fz. The
attraction condition accurately and significantly reproduced the positivity and negativ-
ity which indexed the different cursor movements in the original experiment. In the re-
pulsion condition, however, we see neither an inversion nor a reproduction of this effect.
Based on this, we can conclude that neither valence nor salience was the sole or primary
generator of this particular effect, and indeed further analysis is required to disentangle
their respective contributions.

Individually-calibrated classifiers offer a data-driven method to select relevant fea-
tures from the available data; in our case, the ERPs across all channels between 0 and
600ms following each cursor movement. The method presented in Krol, Mousavi, et al.
(2018) allows these features tobe localised in thebrain, allowing the individual classifiers
to be aggregated again across participants in 3D source space. Using this analysis, we see
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a focused selection of cortical areas that generate the differences between the classifica-
tion schemes. We focused this analysis on the attraction-first group.

ThemPFCwas identified in the original experiment as the primary generator and re-
mains prominent here. It points to the involvement of an error monitoring process, as
per the reinforcement learning theory (Holroyd&Coles, 2002; Nieuwenhuis et al., 2004).
This is in line with the original interpretation of eachmovement as ‘feedback’ which can
be correct or in error depending on the expectations of the observer, or on the progress
that the observer perceives towards the goal.

Since only the grid layout changed between the original experiment and the attrac-
tion condition, the increased involvement of the parietal lobe is likely due to the addi-
tional perceptual and spatial demandsof the adaptedgrid. It is larger (7×7 insteadof the
original 4×4), and the cursor’smovements require additional spatial computation since
the relative position of the reference node (the centre) changesmore strongly than in the
original experiment, where it always remained within one quadrant relative to the cur-
sor. It is this additional computation that likely led to the increased involvement of this
area, which is known to be involved in spatial processing (e.g., Zipser & Andersen, 1988;
Yantis et al., 2002; Goldberg, Bisley, Powell, & Gottlieb, 2006; Silk, Bellgrove, Wrafter,
Mattingley, & Cunnington, 2010).

Additionally, both the right-lateral inferior parietal lobule and a combination of the
medial frontal and cingulate gyrus were identified by Dyson, Thomas, Casini, and Burle
(2015) as contributing to erroneous feedback detection, each ranking first, respectively,
in two different methods quantifying their contributions.

From among all the ICs present in the data, the various areas that the different classi-
fiers focused on can thus be reliably related to the task at hand. More interesting is how
they relate specifically to the dimensions manipulated in the experiment, and the differ-
ent functional processes that would be present.

The original assumptionswere formulated in the form of predictions or expectations
being violated. The valence dimension was manipulated through the instructions, and
created a tendency to predict the favourable outcome, i.e. that the cursor would move
in the ‘appropriate’ direction. The salience dimension could be interpreted as produc-
ing a similar tendency, except that it would preferentially predict that the cursor would
move towards the visually salient point regardless of its valence. In this framework, the
two predictions are congruent in the attraction condition, with these predictions either
both being violated when moving away from the centre, or both being confirmed when
moving towards the centre. If each final perception is referenced to both predictions sep-
arately and in parallel, with each prediction influencing the dopaminergic input to the
mPFC accordingly, this would explain the effects observed at Fz. The congruent viola-
tions, each producing a negative deflection, would combine to result in a strong negative
deflection as observed, while the strong positivity would reflect the congruent process-
ing of ‘reward’ for the two predictions. In the repulsion condition, the two processes are
incongruent; where one would produce a stronger inhibition, the other would disinhibit
the mPFC, and vice versa, essentially cancelling each other out. This is in line with the
reduced negativities that are pronounced equally in both classes in Figure 6.4 for the re-
pulsion condition.

An alternative account could interpret the negative deflections in the repulsion condi-
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tion as an N2 component of the ERP, oft-reported to reflect a conflict monitoring process
(e.g., Nieuwenhuis, Yeung, van denWildenberg, & Ridderinkhof, 2003; Yeung, Botvinick,
&Cohen, 2004). It largelymatches the latency, spatial properties, morphology, and even
cortical generators of the feedbacknegativity, so it cannotbeuniquelydifferentiated from
the feedback negativity in the present context—although there are reports that the feed-
back negativity itself results from conflictmonitoring (Botvinick, Braver, Barch, Carter, &
Cohen, 2004; Yeung, Botvinick, & Cohen, 2004) or is at least sensitive to conflict (Jia et
al., 2007). In the current experiment, the presence of a conflict-related processmay how-
ever be postulated given the experimental design and the reported results. Asmentioned
above, in the repulsion condition, the salience and valence dimensions are incongruent,
i.e., they are in conflict. In the attraction-first group, this may be exacerbated by partic-
ipants possibly having been primed by the previous condition. Instead of the feedback
negativity or reward positivity, a smaller negative deflection is seen reflecting this con-
flict between either the two predictions mentioned above, or the task parameters more
generally. This, too, could explain the ERPs in Figure 6.4. The presence of conflict process-
ing would additionally explain the tendency towards slower reaction times in the repul-
sion condition, reported for conflict conditions in general (F. Vidal, Burle, & Hasbroucq,
2020).

This latter account, in its simplest form, does not include any effects on the ERP of va-
lence or salience per se in the repulsion condition and focuses merely on conflict. A final
account could be a combination of the two above, or the latter account with additional,
unspecified processes related to these dimensions. Conflict processing could delay these
more specific processes to varying degrees making them difficult to analyse using ERPs.
Instead, such processes may be picked up by the classifiers which are individually cali-
brated and take single-trial variability into account.

Importantly, none of the possible accounts of the data presented above would inval-
idate the separation of the valence and salience dimensions by the TvT, AvA, TvA+ and
TvA– classifiers as explained in Section 6.2.4. If the two processes exist separately in
parallel as per the first account, the TvT and AvA classifiers average out the salience vi-
olations/confirmations and focus only on valence-related processes, while the TvA+ and
TvT– classifiers do the opposite to focus on salience. In the second account, these cross-
condition classifiers would focus on the differences between the relevant process in the
attraction condition, and this uniform conflict process. This would not interferewith the
conclusion: If indeed the response processing is the same in both classes for the repulsion
condition, itwould serve as aneutral reference againstwhich to compare the responses in
the attraction condition. As such, the concept of salience- and valence-focused classifiers
remains valid—although it would introduce additional relevance weights in the region
responsible for processing the conflict. Alternatively, if the repulsion condition does ad-
ditionally have valence/salience processes, or if any combination of the given accounts
applies, similarly, a combination of the above two arguments applies and the concept of
salience- and valence-focused classifiers remains valid.

Wemay thus focus on interpreting the differences observed between the classifiers as
presented in Figure 6.5. As mentioned in Section 6.3.6, the attraction-first group shows
different cortical areas responding to salience and valence. The salience-focused classi-
fier, which in this context should focus on differences with respect to the perceptual (vi-

143

This is a preprint version of submittedmanuscript: Krol, L. R., Pawlitzki, J., Gramann, K. & Zander, T. O. (submitted).
Investigating the separation of salience and valence in implicit cursor control. Proceedings of the National Academy of Sciences.



Salience versus Valence

sual) processing of the stimuli, is indeed localised primarily in the parietal areas identi-
fied earlier. The additional but weaker mPFC involvement points towards the involve-
ment of either the conflict monitoring process mentioned above in the latter accounts,
or the general (prediction) error systemwhose activity would remain relevant as per the
first account.

In line with our hypotheses, the valence-focused classifier carries very little weight
in the occipital/parietal regions, and is instead principally focused on the mPFC region,
where EEG correlates of both error and reward processing have been postulated to origi-
nate (Holroyd et al., 2008), supporting that the feedback-related negativity is indeed at
least partially reflective of valence (Yeung, Holroyd, & Cohen, 2004).

The repulsion-first group, however, did not show this same pattern. Here, all clas-
sifiers were dominated by the involvement of a larger, less distinct parietal region. This
does not rule out that the samepatterns do exist in the data—indeed, the othermeasures
do not differentiate this group from the other, and conclusions drawn on the basis of ERP
andbehavioural analyses apply equally to both groups. The difference in the relevant cor-
tical areas however suggests that this group had a fundamentally different approach to
the tasks in both conditions. It appears that the two conditions here cannot effectively be
counter-balanced as intended, instead resulting in what are essentially two different ex-
periments. Still, as a last validation, Figure 6.6 shows the valence- and salience-focused
classifier localisation as applied to the data for both groups together. The conclusion as
mentioned above with respect to the differential involvement of parietal and prefrontal
cortical areas can still be drawn, with the different classifiers predominantly focusing on
different areas. In the combineddata, however,we also see the consistent involvement of
an additional parietal area inboth classifiers, an areawhichwenowknowtobe explained
by its exclusive presence in the repulsion-first group. As such, the separation of the two
groups in this analysis helped sharpen the results. It also highlighted the importance of
investigating the cortical origins of classifiers, a step which is often omitted.

We have shown that both salience and valence, i.e., both the visual properties of the
presentedstimuli aswell as the subjective interpretationof these stimuli, playa role in the
implicit cursor control paradigm as presented here and used before (Zander et al., 2014,
2016). Furthermore, classification schemes can be developed to focus primarily on one or
the other aspect. The differential processing of these aspects is supported by their differ-
ent cortical origins.

Now taking a wider perspective, we wish to come back to the implications of the
present results for neuroadaptive technology. The unit of analysis in this paper was the
individual cursor movement, which was classified on single-trial basis. Single-trial clas-
sification allows the classifier output to be used in real time as input to a computer, e.g.,
to enable control. This control can be implicit if the brain activity that is being classi-
fied is not consciously or voluntarily modulated by the human. Implicit cursor control
is an interesting case in that it demonstrates that the task of moving a cursor, which is
a quintessential example of explicit control, can in fact be performed implicitly without
participants being aware of doing so (Zander et al., 2014, 2016): indeed therewas no con-
sciousor voluntarymanipulationof brainactivity thathelped steer the cursor. Whencon-
trol or interaction happens unbeknownst to the users themselves—the ones supposed
to be in control—the exact cognitive and affective processes that a classifier can poten-
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Discussion

tially access make a profound difference with respect to the forms of interaction and the
types of application that can be realised. The current results support the position that
classifiers can access both perceptual processes, potentially allowing brain-as-a-sensor
applications to be developed, and valence-related processing, i.e. cognitive processes
that reveal subjective value judgements of the users. This latter category enables, among
other things, unique forms of personalisation thatmay greatly increase productivity, but,
given the deeply personal nature of the brain activity, may at the same time introduce
particularly severe issueswith respect toprivacy (Mecacci&Haselager, 2019b), data secu-
rity (Fairclough, 2014), informed consent, and outcome responsibility (Krol et al., 2020).
While we are looking forward to the further exploration of the possibilities of neuroad-
aptive technology, the current results emphasise that researchers and developers should
take these potential issues into account.
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Figure 6.6:Weighted dipole density plots showing the relevance of cortical areas to a the two
valence-focused classifiers TvT andAvA, and b the two salience-focused classifiers TvT+ and
TvT–, for all participants, i.e. combining both attraction-first and repulsion-first groups.
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Salience versus Valence

Figure 6.7: The grand-average ERPs at Fz for the two conditions in the repulsion-first group.
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Figure 6.8:Weighted dipole density plots showing the relevance of cortical areas to a the two
valence-focused classifiers TvT andAvA, and b the two salience-focused classifiers TvA+ and
TvA–, both for the repulsion-first group.
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| Discussion
Three quotes were used to introduce this dissertation, all of which bear some relevance
to the topic of neuroadaptive technology. As we have seen, neuroadaptive technology
uses implicit input obtained from brain activity in order to adapt itself, e.g. to enable
control or interaction, with implicit input referring to any actionable input to a system
that was not intended as such by its source (cf. Schmidt, 2000). A quote from Byrom’s
(1976) admittedly liberal rendering of Chapter I, Verse 1 of the Dhammapada, ‘With our
thoughts, we make the world’, may take on a new meaning in the context of implicitly
brain-actuated environments. Although this is most probably not what the Buddha had
inmind, an abstractly-formulated vision of neuroadaptive technology is to essentially al-
low our free thoughts to interact with the world unhindered, shaping it through contin-
uous adaptations to the benefit of those persons whose thoughts have made it so. This
may sound like a highly indulgent description of the matter, but at its core—unforced
mental states adapt the external context to better support the human—it does embody
themain benefits offered by even themost limited of today’s laboratory demonstrations
of neuroadaptive technology, let alone the applications envisioned for the future.

One necessary requirement for these benefits to be realised, is that our ‘thoughts’ do
indeed enter ‘the world’ in some form, i.e. our brain activity must be externally moni-
tored and decoded. This would add to the body of personal data that is already being
gathered about virtually all users of modern technology. There exist multiple potential
stakeholders to such data, including stakeholders like Edward Bernays, the late pioneer
of using psychological insights to manipulate society to the benefit of paying customers,
i.e., of propaganda. We should remain vigilant that additional insight into the ‘mental
processes and social patterns of themasses’ (Bernays, 1928), which commercial neuroad-
aptive technologymay enable to be gathered at scale and in real time, is not used against
the public interest.

This is all themore pertinent in caseswhere the usermay not be able to prevent infor-
mation from being gathered in the first place. The concept of cognitive probing gives the
computer some autonomy over the process of information gathering, and it has not yet
been established that a user can counteract the automatic informative responses that are
elicited by cognitive or affective probes. It is of such scenarios that the third quote serves
to remind us, on page 9.

These concernsmaynot appear to be immediately relevant today. It is true thatmany
of the scenarios used to illustrate both potential benefits and potential adverse effects of
neuroadaptive technology are based on speculation: for example, speculation concern-
ing the general availability and adoption of brainmonitoring hardware, speculation con-
cerning the real-world accuracy of mental state classifiers, and speculation concerning
our future living and working environments. Even this very dissertation introduced the
topic with a speculative example of a neuroadaptive book. However, we are now in a po-
sition tomake the same arguments without reference to thought experiments or science
fiction. As also stated in the introduction, it is themain argument of this dissertation that
neuroadaptive technology has now sufficiently progressed to warrant both widespread
interest andwidespread concern. A range of possible beneficial applications, as well as a
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number of important concerns regarding the use of neuroadaptive technology have been
presented in Part I of this document. Subsequently, using tools and methodology devel-
oped in Part II, two validations presented in Part III demonstrate a number of key facts.

Specifically, Chapter 1 looked at existing passive BCI research and applications, and
used anovel categorisation to identify a current trend (Krol, Andreessen,&Zander, 2018).
It found that four different degrees of interactivity can be distinguished, startingwith the
theoretical zero-point which is required for pBCI to work: the ability in and of itself to
assess mental states from recorded brain activity. Research is ongoing to produce and
validate more accurate feature extraction and classification algorithms (e.g., Lawhern
et al., 2018; Mousavi & de Sa, 2019; Xu, Grosse-Wentrup, & Jayaram, 2020) to improve
and expand the computer’s ability to decode our mental states, but a good number of
proven methods already exist (Lotte et al., 2018). These methods can also be used in
real time, allowing the computer to respond to the detected mental states. This makes
the computer interactive, and enables it to adapt to the received implicit input—i.e, it
enables neuroadaptive technology. The first interactive category includes open-loop sys-
tems, which adapt to the detection of pre-determinedmental states in a pre-determined
way. For example, the detection of a mental state reflecting the user’s intention to in-
teract with an object, as investigated by Protzak et al. (2013) and Shishkin et al. (2016),
could be used to replace explicit control instructions such as button presses. The second
interactive category deals with closed-loop neuroadaptive systems, in which the adapta-
tionsperformedby thecomputerhavean influenceon themental states that triggered the
adaptation in the first place. In such closed-loop settings, neuroadaptive systemsmay for
example detect workload levels and aim to bring them into balance (Kohlmorgen et al.,
2007; Afergan et al., 2014), or neuroadaptive learning environments can pace the learn-
ing experience to optimise student engagement (Yuksel et al., 2016; C.Walter et al., 2017).
Thefinal categorydealswithautomatedadaptation, alsoknownas intelligentadaptation
(Fairclough, 2017). Here, the computer employsausermodel inwhich it stores themental
states it has decoded alongside the situational parameters inwhich they occurred, giving
it a database fromwhich to infer higher-order relations and causal effects. This concept
has been used extensively by non-passive BCI systems aimed at explicit communication
and control (see e.g. Rezeika et al., 2018 for a review), but a number of unique opportu-
nities are created when it is employed by pBCI systems. Of particular interest is the fact
that systems from this final category may have the ability to autonomously gather ad-
ditional information needed to make more reliable inferences. The method that makes
this possible, called cognitive probing, was discussed in more detail in Chapter 2 and a
demonstration was presented in Chapter 5.

Chapter 2 explained in detail how neuroadaptive technology can use cognitive prob-
ing to obtain specific pieces of information. The newly-defined concept rests on the un-
derstanding that certain events automatically evoke responses from us. For example, it
is virtually impossible not to read a word that is visually presented to us, and once we
have read it, we have its semantic concept in mind. Also on a higher level, many cogni-
tive and affective processes are beyond our conscious control: seeing or hearing some-
thingwe like automatically brightens ourmood, even if ever so slightly. These automatic
responses are reflected in our brain activity. A system that has access to this brain activ-
ity, and the ability to interpret the appropriate mental states, could make use of this by
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presenting us with various stimuli and gauging our brain’s automatic responses to them.
One important reasonwhy a systemmaywant to do this is to update its usermodel. This
model mentioned in the previous paragraph, where a user’s mental state is recorded as a
function of situational factors, may be incomplete, leaving the computer unable to infer
information with the desired level of confidence. Cognitive probes can then be used to
elicit the missing responses from the user, which are then stored in the model to fill in
the gaps. As such, this method allows neuroadaptive systems to autonomously gather
information from brain activity they deliberately induce in their users. A cognitive probe
was defined as ‘a technological state change that is initiated ormanipulated by the same
technology that uses it to learn from the user’s implicit, situational, cognitive or affective
brain response to it’ (Krol et al., 2020). There is a steadily increasing number of exam-
ples in the literature that use various independently developed implementations of this
method, which the provided definitions now allows to be recognised as sharing a funda-
mental similarity (e.g., Dal Seno et al., 2010; Peck, Afergan, & Jacob, 2013; Iturrate et al.,
2015; E. A. Kirchner et al., 2016; Lorenz et al., 2016; Mladenovic et al., 2019). Recognis-
ing the shared foundations of these previously separate approaches also allows a generic
framework to be built in which both the benefits and the potential risks of the method
can be described and analysed. Themain benefit of implicit input itself is clear: it allows
meaningful communication to take place without requiring any explicit instructions to
be formulated. With cognitive probes specifically eliciting implicit input, the technology
does not have to wait for the human to (implicitly) initiate the communication, but can
autonomously gather the information it needs to best support the human. Furthermore,
to the extent that it can target automatic responses, cognitive probing may be capable
of obtaining information that could not be gotten any other way—not even by asking
someone directly. As for the risks, importantly, cognitive probing requires the computer
to have some autonomy in deciding what to present to the user, meaning it must also
have its own logical reasoning tomake these decisions. In otherwords, the computer can
be seen to have its own agenda (Fairclough, 2017) which may not necessarily align with
the user’s. With an adverse agenda, such a systemmay be able to extract responses from
users against their will—to the extent that they are automatic—or induce undesirable
mental states. Chapter 2 therefore also discussed a number of technical aspects to con-
sider, as well as ethical aspects concerning consent, privacy, agency, and responsibility.
Caremust be taken that autonomously operating systemswith the ability to elicit and ac-
cess implicit brain responses handle their influence and the obtained data with due care
for their users.

The concepts and systems described in Chapters 1 and 2 rely on real-time access to
cognitive and affective states, decoded from a continuous recording of brain activity. The
range of possible applications, as well as the severity of some of the ethical concerns sur-
rounding these systems, thus depend on the exact types of cognitive and affective states
that can be reliably detected. This is commonly determined through clever experimental
designs aimed at uniquely eliciting specificmental states, but it is important to be able to
verify these claims on the basis of the recorded data, and tomake sure that the classifiers
do in fact target the intendedmental states. Chapters 3 and 4, therefore, introduced new
tools to validate some of the analysis and classificationmethods that are in common use
today.
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Chapter 3 presented SEREEGA, a toolbox to simulate event-related EEG activity. It
allows a signal comparable to the one normally recorded by real EEG electrodes to be pro-
duced from the groundup: a user of the toolbox can configure the exact parameters of the
desired cortical processes, which will then be simulated to produce realistic scalp-level
time series. The underlying parameters thus constitute a known ground truth describ-
ing the simulated processes. This is important, as such a ground truth is not available for
real EEG recordings. ManyEEGanalysis techniques exist to attempt to uncover these ‘pa-
rameters’ of real recordings, including the event-related potential technique to find true
activation patterns in spite of noise and variability (Luck, 2014) and independent compo-
nent analysis tofind the cortical sources of the activations (Makeig et al., 1996), andmany
more continue to be developed. To evaluate the efficacy and accuracy of these methods,
however, a ground truth is needed to compare their results to. Therefore, researchers
and developers often turn to simulations. Even though simulation has long been a pop-
ular method, no standardised toolbox existed for this purpose until the publication of
SEREEGA (Krol, Pawlitzki, et al., 2018). SEREEGA’s functionality covers and extends the
vastmajority of past and present EEG simulation approaches, and the toolbox’s architec-
ture and open-source licence allows it to be readily extended with additional features. It
makes EEG data simulationmore accessible, standardised, and reproducible.

SEREEGA-simulated data was used in Chapter 4 to validate a classifier visualisation
method. In data-driven approaches to BCI, machine learning is employed to select rele-
vant features from the recorded data. These features are selected based on their utility to
distinguish between the classes under investigation. In a way, achieving significant clas-
sification accuracy thus means that features can be identified that allow the classes to
be reliably distinguished from each other. Importantly, however, in and of itself, a signif-
icant classificationaccuracydoesnotmean that the features selectedby the classifierbear
any relevance to the cortical processes that were intended to be targeted. If non-cortical
activity is present in the data, which is almost always the case in raw EEG recordings, a
classifierwillmake use of this activitywhenever it aids the separability of the classes. For
example, eye blinks andmuscle activity often correlate to various task parameters. Such
activity can thus be very informative, but may be liable to be influenced by irrelevant pa-
rameters as well: eye blinks, for example, may change as a function of environmental hu-
midity. Therefore, it may be preferable to target cortical activity specifically. Themethod
presented in Chapter 4 visualises the areas that an EEG-based spatio-temporal classifier
focuses on, allowing the different sources to be spatially separated, identified as cortical
or non-cortical, and neurophysiologically interpreted. It does this by first transforming
the classifier’s filter weights into patterns (Haufe et al., 2014), representing the projec-
tion of the areas isolated by the classifier onto the scalp (i.e., the forward model). These
can then be decomposed into contributions from individual sources using a separately
obtained unmixing matrix from blind source separation methods such as independent
component analysis. This decomposition then assigns a so-called relevance weight to
each source. Since the sources canbe localised in3Dspace, so can these relevanceweights
be assigned to a location. Using a 3D weighted kernel density plot, the weights can then
be visualised in a virtual brain to identify which areas contributed to classification. This
not only allows us to evaluate towhat extent a classifier focused on cortical as opposed to
non-cortical sources, it also provides insight intowhich cortical areas, exactly, contribute
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to classification. With this method, we can thus even use classification methods to ex-
pand our understanding of the functional processes in the brain, introducing classifier-
based neurophysiological analysis to neuroscientific research in general.

The tools introduced in Chapters 3 and 4, then, enabled us to validate the concepts
introduced in Chapters 1 and 2—in particular, the notion of implicit control based on au-
tomatic brain responses elicited by cognitive probes.

The experiment described in Chapter 5 demonstrated implicit control over a cursor.
It consisted of two phases. In a first calibration phase, participants were shown a cur-
sor moving randomly over the nodes of a 4 × 4 grid, with one of the corners indicated
as the target. Participants were instructed to judge each individual cursor movement
as either ‘appropriate’ or ‘inappropriate’ with respect to the larger goal of reaching the
indicated target. A classifier was then trained on EEG data gathered in this first phase,
separating ‘appropriate’ from ‘inappropriate’ movements with a mean estimated aver-
age accuracy of 72% across participants. In a second online phase, this classifier was
used to reinforce the cursor in real time. Initially, the cursor moved randomly: each cur-
sor movement served as a cognitive probe, eliciting a response from the observing par-
ticipant that served to categorise that movement as either appropriate or not. Based on
that information, the model that reflected the participant’s preferences with respect to
the cursor movements was adjusted. Since the cursor’s movements were based on this
samemodel, the cursor came to behave increasingly in line with these preferences, even
as the participants were unaware of causing any changes. As such, this online reinforce-
ment based on implicit input led to significantly goal-oriented behaviour of the cursor,
i.e., implicit cursor control. The classifier visualisation methods described in Chapter 4
revealed that the classifier focused almost exclusively on the medial prefrontal cortex to
extract the implicit input in question, supporting the interpretation that the underlying
cortical processes are indeed automatic brain responses: they most likely relate to pre-
dictive coding, a fundamental process in which our brains continuously predict future
(neuronal) events and compare those predictions to the actual final occurrences in order
to optimise our behaviour. Such a fundamental process is unlikely to be under direct con-
scious influence, while at the same time, Chapter 5 concluded, it can reflect higher-order
cognition: in this case, it reflected fine-grained preferences with respect to cursor move-
ments. Where traditional human-computer communication is restricted by the speed
and accuracy with which humans can provide explicit instructions, this demonstration
of effective cursor control through implicit interaction thus illustrated how neuroadap-
tive technology can bypass these limitations, effectively widening the communication
bottleneck and decreasing the asymmetry present in current human-computer interac-
tion paradigms.

In this demonstration of implicit cursor control, the classifier visualisation method
was used to analyse which cortical processes significantly contributed to classification,
and to support the conclusion that the used inputwas indeed implicit. However, it could
not be determined with certainty that the targeted cortical activity was primarily in-
formed by the participants’ subjective preferences, as assumed, and not by more ‘neu-
tral’ cognitive processes such as those related to visual processing of the stimuli. For a
deeper look at the processes underlying the implicit cursor control paradigm, Chapter 6
therefore presented an adapted paradigm allowing two particular dimensions to be sep-
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arated: visual salience and valence. The grid was larger, the corner nodes were removed,
and a visually highlighted reference node was placed at the centre of the grid. As before,
a cursor could move across the nodes of this grid. In two separate conditions, these vi-
sual (salience-related) aspects of the experimental paradigm were left constant, while
the subjective (valence-related) interpretations of the cursor’smovementsweremanipu-
lated through the instructions: a movement towards the centre was ‘appropriate’ in one
condition, but ‘inappropriate’ in the other. This allowed different classifiers to be cali-
brated focusing either on salienceor onvalence. The results of this analysis indicated that
both salience and valence play a role during implicit cursor control as separate processes.
Using the visualisation method from Chapter 4, we could reveal that the different clas-
sifiers could reliably isolate salience and valence from different cortical areas. Although
this was certainly not the first experiment isolating valence-related activity from EEG,
this experimentdiddemonstrate its presence in the implicit cursor control paradigm, and
illustrate the utility of localising classifier weights in 3D source space for both BCI appli-
cations and neuroscientific research in general.

Furthermore, the fact that neuroadaptive technology can isolate and interpret brain
activity indicative of subjective valence has important implications, concerning both the
range of potential neuroadaptive applications, and the potential ethical issues that may
arise from such applications. The results of these latter two chapters thus demonstrated
the concepts described in Chapters 1 and 2 as well as their potential benefits, but also
validated the concerns addressed in those chapters. An important question thus remains:
Going forward, as a field, how can weweigh what is possible against what is desirable?

Value-Guided Research

Already in 1980, Collingridge considered ‘one of the most pressing problems of our time:
can we control our technology—can we get it to do what we want, and can we avoid its
unwelcome consequences?’ In this consideration, the avoidance of unwelcome conse-
quences is the domain of governmental policies placing limitations and controls on the
technology, determining what is allowed in what form. The problem in deciding this,
however, is twofold. When a new technology is still in its infancy, its potential unwel-
come consequences cannot be predictedwith sufficient accuracy to justify anyhard, legal
limitations on its use. Given the unpredictable but inevitable and sweeping interactions
that happenbetween technology and society, however, it is as good as certain that unwel-
comeconsequenceswill arise at somepoint, butwhen these consequencesfinally surface,
the technology has become so pervasive as tomake limitations and controls difficult and
expensive to implement. In Collingridge’s words:

This is the dilemma of control. When change is easy, the need for it cannot be
foreseen; when the need for change is apparent, change has become expen-
sive, difficult and time consuming.

This dilemma is now referred to as the Collingridge dilemma. Collingridge (1980) il-
lustrated it in the context of techno-societal issues such as the toxicity of lead in petrol,
nuclear power plants, the Manhattan Project, and other forms of weapons research. We
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can see how it currently also applies to consumer neurotechnology in general, and neu-
roadaptive technology in particular. With commercial applications of neurotechnology
now being marketed directly to consumers, but not yet having reached a point where
other technologies, economic institutions, or social conventions rely on it, it would be
minimally disruptive to limit or control the market at this point. At the same time, there
is no pressing, justifiable reason for it: no harm is currently being done, clear potential
benefits have been identified, and corporations big and small have explicitly shown in-
terest in the technology.

The precautionary principle is often suggested as a solution to this dilemma, essen-
tially disallowing the technologyuntil its safetyhasbeenproven. This principle is already
employed by some regulatory bodies of the European Union, especially as regards the
environment. A criticism of this approach, however, is that it stifles innovation. When
dealing with the uncertainties of a technology’s future influence on society, Collingridge
instead proposes a method of decision making that recognises that the debate is essen-
tially about values, but nonetheless focuses exclusively on facts. From his example of
lead in petrol, a generally-accepted value V1 may be formulated as If X eliminates a health
hazard, X ought to be done. Combined, then, with the fact F1 that Reducing the amount of
lead in petrol would eliminate a health hazard, their conjunction F1 ∧ V1 leads to the con-
clusion V2 that The amount of lead in petrol ought to be reduced. The argument thus begins
and ends with value statements, but hinges on F1. Collingridge emphasises that, rather
than debating values directly, a set of shared initial values allows the debate to focus on
facts, allowing it to be argued on the basis of hard data. The environmental protection
agency and the petro-fuel additive manufacturer never disagreed on V1, instead arguing
the evidence for and againstF1, using any number of additional facts.

This model could provide some structure to the ongoing discussion regarding poten-
tial ethical, legal, and societal implications of neuroadaptive technology. It suggests that
we separate values from facts, and that a constructive stepmay be to find a set of relevant
common values.

A lot has been written about values relevant to neuroadaptive technology; in some
cases, this is already in the form of clearly formulated values, in others, it is a broader
analysis of howneuroadaptivity relates to aparticular set of values. Onmany issues, how-
ever, which themselves are widely recognised as valid issues, no shared consensus has
been reached. Fairclough (2014), for example, argues that any physiological datamust be
treated with the same confidentiality asmedical data, stating that ‘that is what they are’.
Kellmeyer (2018), on the other hand, points out that there is no generally accepted defini-
tion of biomedical data thatwould presently allow us to classify brain data as such: as an
analogy, he points out that medically-relevant information has been inferred even from
supposedly non-medical sources of data such as text messages and a smart phone’s lo-
cation data. If brain activity is medical data becausemedical conclusions can potentially
be drawn from it, should text messages be medical data too? This discussion, however,
in part mixes values and facts. Both authors implicitly agree that personal data should be
protected, and thatmedical data should have higher standards of protection than personal data.
They furthermore agree with the fact that neurotechnology processes brain data and that
brain data is personal data; they disagree, however, whether brain activity is medical data.
TheCollingridge perspective thus focuses the debate on this latter fact, and suggests that
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new research should be conducted to support or contest this issue in particular, rather
than continuing to discuss which values ought to apply.

Similarly, proponents of cognitive liberty argue that no individual may be compelled
against their will to use neurotechnology, nor that they should be prohibited from doing
so, as long as no harm befalls others (Boire, 2000). They propose this as a necessary ex-
tension to the freedom of thought, stating that ‘the right and freedom to control one’s
own consciousness and electrochemical thought process is the necessary substrate for
just about every other freedom’ (Sententia, 2004). Neuroadaptive technology, especially
when using cognitive probing as described in Chapter 2 (Krol et al., 2020), may in fact
interferewith such freedom inways that are not clearly covered by the current concept of
cognitive liberty,which assumes that the human controls the technology. If someone vol-
untarily chooses to use neuroadaptive technology, but this technology then uses implicit
input to influence theirmental stateswithout this person’s awareness—potentially even
against their interests—to what extent, exactly, is this person free to choose their use of
the technology? To what extent are they in control of the outcome when the outcome is
produced from their implicit input? And by extension, whowould bear responsibility for
such an outcome? For example, the implicit cursor control experiment was designed to
guide the cursor towards the intended target. Using the exact same input, however, it
could also be inferredwhere the user did notwant the cursor to go—and the cursor could
be steered there instead. The same data can be used both to support the user, and to gen-
erate the exact opposite outcome. And even when the outcome is seemingly favourable,
‘although [humans]may be certain aboutwhat theywanted, theymay be insecure about
whether they did or did not “do” it, and even wrong about what they think they wanted’
(Haselager, 2013).

This points to a deeper issue that may boil down to the definition of ‘control’. What
does it mean, exactly, for someone to be in control of the neurotechnology they use?
Fields such as control theory, also applied to human-computer interaction, consider this
question to be exclusively confined to the realmof facts; for example, they assign ‘control’
a fixed definition based solely on the mechanical or logical functioning of the technol-
ogy (e.g., Breitfelder&Messina, 2000). However, neurotechnology allows humanity and
technology to become increasingly interwoven, making a reliance only on the technolog-
ical aspects seem one-sided. As we have seen, e.g. in Chapters 1 and 2, and in Haselager’s
comment concluding the previous paragraph, in a neuroadaptive interplay between user
and technology it may no longer be as clear who does what, or who controls whom. In
light of considerations to separate facts and values, it may therefore actually be worth-
while to consider control, as in ‘being in control’, to be a value instead—a value that is
yet to be defined and agreed upon. As a value statement, as opposed to a fact, a notion
of ‘control’ can give due consideration to ethical issues surrounding the use of technol-
ogy. For example, it could allow a reader to be formally considered to implicitly control a
neuroadaptive book if and only if the actions performed by the book are consonant with
the reader’s immediate wishes. Such a value statement can then be combined with facts
pertaining to various neuroadaptive control mechanisms to ascertain whether a particu-
lar application does or does not enable ‘control’, and by extension, whether the human is
a ‘user’ or not. This is of crucial importance to interpret statements, such as those refer-
ring to cognitive liberty,with respect to the freedomtouseneurotechnology and to control
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one’s consciousness.
This additional perspective on Collingridge’s original method thus forces us not to

simply list known values and facts, but also to consider more closely whether some facts
perhaps ought to be seen as values, and vice versa.

The explicit consideration of societal values also widens the perspective beyond is-
sues concerning the immediate context of the technology and its individual user. The
adoption of new technology by a society is unlikely to progress uniformly, and may af-
fect different people in different ways. BCI research oriented at explicit communication
and control applications has found that roughly 20% of participants are not able to reli-
ably generate a detectable control signal, in some cases simply because of the anatomical
structure of their brains, which cannot be changed (Allison & Neuper, 2010). It is un-
known to what extent this may affect the various passive measures of cognition which
form the basis of neuroadaptive technology, but it should be assumed that, for any given
neurotechnology, a part of the population may simply not be able to use it. Conversely,
when states can accurately be detected, there may be a part of the population for whom
these states more often constitute invalid or counter-productive information than for
others—people suffering from post-traumatic stress or obsessive-compulsive disorders,
for example, may not be able to benefit from closed-loop neuroadaptive systems in the
same way as others. Such considerations apply to all new technologies, of course, but
their applicability to neuroadaptive technology may not be as predictable as for other
technologies, which generally rely on explicit interaction.

It might thus be of interest to organise a series of workshops where a list of values
may be gathered and discussed: a documentation of values that are relevant to neuroad-
aptive technology, the extent towhich they are currently contested, andwhat factswould
be required to either adhere to or conflict with them. Such a document could be more
actionable than e.g. the list of four priorities that resulted from an earlier more general
workshop (Yuste et al., 2017), as itwouldgenerate researchquestionswith respect to facts
that are either currently disputed, or currently unknown but bear direct relevance to the
identified values. Accepting, for example, that the privacy of thought ought not to be vi-
olated, one can then design research to attempt to elucidate at what point any particular
neuroadaptive application does indeed violate the privacy of thought (e.g., Haselager &
Mecacci, 2018), and to investigate what may be done to protect it. Of particular impact,
then, will be research producing new facts that demonstrate an application’s incompati-
bility with society’s fundamental values: such facts, combined with an authoritative list
of said values, must lead to regulatory action, as per Collingridge’s original model. Being
guided by values, we may thus discover the vast benefits that neuroadaptive technology
can offer society, by striving first and foremost to discover and demonstrate those forms
of neuroadaptive technology that ought not to exist.

In Conclusion

The chapters of this dissertation presented conceptual, methodological, and experimen-
tal advances in the field of neuroadaptive technology. Part I provided conceptual frame-
works to unify previous works and guide future research. Part II presented new tools
to help validate some of the technology’s core methods. Part III, finally, experimentally
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demonstrated a number of key possibilities.
Honestly admitted, there is an inherent danger inmass-processing personal data, es-

pecially where it concerns uniquely sensitive, involuntarily produced brain data. Openly
discussed, however, there is no need for the potential risks to outweigh the potential
benefits. Properly guided, neuroadaptive technology may lead to environments where,
through completely new notions of ‘interaction’, our thoughts really domake theworld.
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| Chapter 5 Supplementary Information
Note: The ‘main manuscript’ referenced in this supplement refers to Chapter 5. As such, ‘figure 1
of the main manuscript’, for example, refers to figure 5.1.

Materials andMethods

Experimental Setup

Two computers were used for this experiment: One to display the stimuli and another to
record EEG. Stimuliwere shownon an Iiyama ProLite B2776HDS 27′′ display using a reso-
lution of 1920×1080pixels, located approximately onemeter away from the participants.
The keyboard used was a standard US layout computer keyboard.

EEG was recorded continuously using 64 active Ag/AgCl electrodes (actiCAP; Brain
Products GmbH,Munich)mounted according to the extended 10-20 system on an elastic
cap (EASYCAP GmbH, Munich). The signal was sampled at 500 Hz and amplified using
BrainAmpDC amplifiers (Brain Products GmbH,Munich). All electrodeswere referenced
to FCz and the ground electrode was placed at AFz.

EEG data was recorded and combined with the paradigm’s markers using the Lab
Streaming Layer framework (Swartz Center for Computational Neuroscience [SCCN],
University of California, San Diego [UCSD]).

Experimental Paradigm

The cursor’s movements were restricted by the nodes of a visible grid. The cursor started
out ononeof thesenodes and, for eachmovement, could onlymove tooneof the adjacent
nodes. Depending on the cursor’s position in the grid, then, there were up to eight possi-
bilities for onemovement. The grid consisted of gray open circles connected by gray lines
on a black background. The cursor in this paradigm was a red, filled circle. The cursor’s
sizewas 4.5%of the display’s total height, the grid nodes’ size 6%, and the horizontal and
vertical grid lines’ length 15%. Line thickness between the grid nodes was set to 2 pixels.
‘Red’waspureRGB(255,0,0), ‘gray’ RGB(51,51,51) and ‘black’ RGB(0,0,0). Thedimensions
of the grid are discussed below.

An animation allowed the participants to be able to anticipate the moment of each
movement. Over the course of one second, a white ‘ghost cursor’ would grow inside of
theactual cursor. As soonas thisghost reached the samesizeas theactual cursor, itwould
instantaneously be repositioned to the chosen adjacent node, while also highlighting the
grid line connecting the twonodes inwhite. ‘White’ herewaspureRGB(255,255,255), and
the highlighted grid line’s thickness was increased to 3 pixels. The movement remained
visible for one second,with the redoriginal cursor still on the initial node, thewhite ghost
cursor on the new node, and a white line connecting them. Following that, all whites
disappeared and the (red) cursor would instantaneously move to and remain at its new
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position, on the new node, for another second, before the animationwould start over for
the next movement. In all, a single trial was three seconds in length.

Gridsof threedifferentdimensionswereused in this study: Oneby threenodes (1×3),
four by four nodes (4× 4), and six by six nodes (6× 6).

Oneachgrid, a single rednode inoneof the corners indicated the current target. Once
the cursor had landed on this target node, a new grid was started with the same dimen-
sions, but a different layout. For the 1× 3 grids, each new grid was rotated either 45, 90,
or 135 degrees relative to its predecessor, and a new target corner was chosen at random
(‘corner’ here is one of the two ending nodes of the grid row). The larger grids did not ro-
tate, but a new target was selected for each new grid such that no two subsequent grids
had a target in the same corner. Each newly started grid was displayed for one second
before the first movement was initiated, for the participants to orient themselves.

In all grids, the cursor’s startingpositionwasonenodeaway fromthe corner opposite
the target’s, in a straight line to the target.

Supplementary Figure S1 illustrates the stimuli; Supplementary Movie S4 contains
animated stimuli as seen by the participant.

For each individual cursor movement, a movement direction was chosen randomly
from the set of possiblemovements. By default, all possible directions had an equal prob-
ability of being selected, and during the offline (calibration) sessions, these initial proba-
bilities remained unchanged—the cursor was unbiased andmoved randomly. However,
during online application of the pBCI, the directional probabilities were altered based on
the classification of eachmovement as either ‘correct’ or ‘incorrect’, biasing the cursor to
repeat movements classified as ‘correct’.

Specifically, all movement directions were represented a specific number of times in
the set fromwhich each newmovement was randomly selected. After classification, the
respective directions’ numbers were increased or decreased such that the resulting prob-
ability of each subsequent direction is given by

p =
mx

n+ (m− 1)x

where x is the respective direction’s initial number of shares in the set, n is the full set’s
initial size, andm is amultiplier. For amovement classifiedas ‘correct’,mwas2.0 for that
movement’s direction and 1.5 for the two adjacent directions; for movements classified
as ‘incorrect’,mwas 0.5 and 0.75, respectively. All directions started with a share of 100
elements each in the set. All shares below 1 were rounded up at the time of selection.

The adaptation of adjacent directions represents a certain degree of leniency which
the participants were assumed to show in their judgements: If the target is a few nodes
north of the cursor’s current position, a firstmove to the north-west is imperfect butmay
still be acceptable. Therefore, the feedback received from amovement to the north-west
should not only alter this specific direction’s probability, but should also influence subse-
quent movements to both the north and the west.

All visible on-screen events were marked in the EEG stream and additional informa-
tion about each cursor movement was logged, including distance to the target and the
movement’s direction relative to the target direction (i.e., a straight line unconstrained
by the grid represented a 0◦ movement).
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The paradigmwaswritten in Python using the Simulation andNeuroscience Applica-
tion Platform 1.02-beta (SCCN, UCSD; https://github.com/sccn/SNAP).

Participants
A total of nineteen participants participated in this study, with an average age of 25.4
years ± 3.4. Seven were female, and a total of two participants were left-handed. Par-
ticipants were asked, alternately, to use either their left or their right hand to indicate
their judgements. This resulted in ten participants not using their dominant hand. All
had normal or corrected to normal vision. Instructions were given in writing, in German.
While all knewGerman, thirteendidnot haveGermanas theirmother tongue; thesewere
verbally given additional, standardized instructions.

Nineteenparticipantsperformedcalibration trials,while sixteenof themadditionally
performed online trials.

Experimental Procedure
All participants were informed of the nature of the experiment and the recording and
anonymization procedures before signing a consent form. The ethics committee of
the Department of Psychology and Ergonomics at the Technische Universität Berlin ap-
proved the experiment and the procedures.

After preparation and setting up the EEG cap, which took roughly one hour per par-
ticipant, participants were seated in a padded chair in a dimly lit room, about one meter
away from the stimulus display. Inwriting, theywere instructed to judge each individual
cursormovement on the display as either ‘acceptable’ or ‘not acceptable’, with respect to
reaching the target, and to indicate their judgement by pressing either ‘v’ or ‘b’, respec-
tively, on a computer keyboard using one and the same finger of one hand. The partici-
pants performed this task during all blocks.

Participants were first given four blocks of 50 trials on 1 × 3 grids. Here, the cursor
performed only one movement per grid: Regardless of whether or not that movement
reached the target, a new grid was subsequently started. This was because after a move-
ment away from the target, only one movement possibility would remain, i.e. that trial
would have no informational value. Breaks between these blocks were self-paced, and
participants were given time to practice before the first block was started.

Following these first blocks, participants received additional instructions for the
larger grids, emphasizing their task to judge every movement individually and indepen-
dently of the cursor’smovementhistory. Participantswere againgiven some time toprac-
tice, on a 4×4 grid, and then performedfive blocks of 120 trials on grids of that size. Here,
if the target had not been reached after 55 trials in one grid, a new grid was started. 55
is twice the median number of randommovements required to reach a target on a 4 × 4
grid.

Taking symmetry and rotation into account, a total of 43 unique cursor movements
are possible on the 4 × 4 grid, i.e., 43 unique pairs of distance and angular deviance. In
between the five calibration blocks, in four sessions, participantswere shown, in random
order, all 43 unique cursormovements. For each of these, participants were asked to rate
it as either ‘acceptable’ or ‘not acceptable’, and on a scale of 1 to 5, with 5 being ‘the best
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possible movement in that situation’, and 1 being ‘the worst’. Here, unlike during the
blocks, there was no time limit imposed on their answers.

EEG recorded during these latter five blocks served to calibrate the classifier, as dis-
cussed in Feature Extraction andClassification. This classifierwas then applied to onemore
block of 120 trials on 4× 4 grids, and one last block of 120 trials on 6× 6 grids. Nomaxi-
mum number of trials other than the block’s length was set for these online blocks.

Feature Extraction and Classification
A BCI based on supervised machine learning needs to be calibrated before it can be ap-
plied. This calibration is typically performed on sets of recordings, usually EEG epochs,
which are known to contain the signals that need to be detected later. On the basis
of these epochs, a classifier is calibrated to optimally distinguish between the different
classes of source signals.

The classes the classifier was calibrated on were formed on the basis of the move-
ments’ angular deviance from a straight line towards the target, as illustrated in Supple-
mentary Figure S2. ‘Correct’ movements were those with an absolute angular deviance
of 0◦; ‘incorrect’ were those with an absolute angular deviance of 135◦ ormore, as in Sup-
plementary Figure S3. These class definitions were determined based on the first three
participants’ data.

Note that the participants’ judgements, indicated using button-presses, were ig-
nored: Only a movement’s angle with respect to the target determined its class. Move-
ments between 0 and 135◦ were not included for calibration.

The open-source toolbox BCILAB (Kothe&Makeig, 2013) version 1.01 was used to de-
fine and implement the pBCI. This approach extracted features from the time course of
each of the 64 channels by subsampling the ERPs of each epoch. This was done by divid-
ing the time course into a sequence of 8 consecutive 50 ms windows (8 time windows
starting at 50ms after cursormovement) and replacing eachwindow by its average. The
resulting features were thus one value for each channel in each time window. Linear dis-
criminant analysis (LDA) was then applied to these features generated from all available
calibration trials to distinguish between the features belonging to the two classes. The
outcome of the LDA is a linearweighting of all features. In otherwords, in each timewin-
dow all channels receive a weight according to their relevance for classification in that
specific timewindow. The linear combination of all features of one single trial with these
weights then gives a number between -1 and 1, indicating whether this trial is classified
as belonging to class 1 or to class 2.

For the feature extraction, the data was first resampled at 100 Hz, and band-pass fil-
tered from 0.1 to 15 Hz. Linear discriminant analysis was regularized by shrinkage. A
[5,5]-times nested cross-validation with margins of 5, ensuring the independence and
identicality of the feature distributions, was used to select the shrinkage regularization
parameter, and to generate estimates of the model’s online reliability.

Extended Feature Analysis
Themethod used by the pBCI to extract discriminative information (described in Feature
Extraction andClassification, above) canbe analyzed to reveal further insights into the rele-
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vant underlying processes. The classificationmodel used here is amultivariate approach,
a linear discriminant analysis (LDA), optimized for the discriminability of the extracted
features between classes. Each feature represents data at a single sensor for one of the
chosen timewindows. Hence, themethodology recently introducedbyHaufe et al. (2014)
could be applied to interpret the classificationmodel.

For one of the eight 50ms timewindows, Figure 2 in themainmanuscript illustrates
three aspects of the information used by the pBCI: its scalp topography, its estimated
source within the brain, and the activity of that source as filtered from the EEG, i.e. the
selected signal of interest.

Signal of interest Panel c of Figure 1 in the main manuscript shows the EEG activity
projected by the LDA filter for the third time window, i.e., the combined activity of all 64
channels as filtered by the classifier. Supplementary Figure S5 illustrates this for all eight
time windows.

In Supplementary Figure S5, the ERP is shown for eight groups of cursor movements,
time-locked to that movement, as well as the difference wave between the two classes
(‘correct’ and ‘incorrect’). The difference wave represents the actual signal (and the op-
timization target) used by the classifier, in the corresponding time window. The time
window of the LDA filter used is indicated in gray.

Each figure indicates the response to different cursor movements of those processes
whose activity was filtered from the EEG in that time window, over the course of a full
second.

Identifying scalp projections In panel a of Figure 1 in the main manuscript, the scalp
map shows, on average for all participants, the (interpolated) activation pattern which
illustrates how the signal of interest is expressed in the 64 channels (Haufe et al., 2014), in
the third time window. Supplementary Movie S1 shows this activation pattern over the
full length of the used 400ms.

For each participant, LDA patterns A = (aj)j were generated from the LDA filters
M = (mj)j originally used for online classification by conjugation with the features’ co-
variance matrixC : A = CMC−1. Spatial interpretation of these patterns for each time
window reflects a mixture of scalp activations related to discriminative source activity
Â = (âj)j and class-invariant noise representationN , with A = Â + N . An estimate
of Â can be generated by reducing the filter entries representing class-invariant noise by
weighting eachfilter entrymj with the correlation of its associated feature activity vector
over trialsFj to the binary vector of true class labelsL:

m̂j = corr(Fj, L) ∗mj

Conjugating the resulting correlated filters M̂ = (m̂j)j with C gives the resulting
correlated pattern Â = (âj)j . Â can be visualized by topographic plots for each time
window identifying the scalp projections of the most discriminant source activity at
that time, as in Figure 1 of the main manuscript and Supplementary Figure S5, and
SupplementaryMovie S1.
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Identifying relevant sources To identify the sources underlying these topographic rep-
resentations, the backwardmodel, i.e. the LDAfilter, was combinedwith an independent
component analysis (ICA). The ICA unmixing matrix W = (I1, I2, · · · , In) was deter-
mined on previously manually cleaned data for each participant by using the Adaptive
Mixture ICA (AMICA) Toolbox (Palmer, 2012), such that s = Wx, where s represents
the source activation related to a given scalp activation x. For each time window, the rel-
evance for classification Ri of each independent component Ii can then be determined
by distributing the LDA filter weights to the independent components viaW , weighted
by two factors. The first factor is compensating for the amplitude alignment of the LDA
filter weights to the feature amplitudes. It is determined by calculating the variance over
trials of the feature F̂i extracted from the time series of the independent component:
Vi = var(F̂i). A second weight is determined for filtering out noise representations by
weighting the independent components with the correlation of their feature activity to
the true class labels (as described above for electrode activity).

Ri = Vi ∗ corr(F̂i, L) ∗WM

Localizing relevant sources To localize the identified sources, equivalent dipole mod-
els that describe the most likely position of the source in a standard head model were
identified for selected components by using the EEGLAB plug-in DIPFIT 2.x (Oostenveld
& Delorme, 2003). Components were selected by a threshold criterion for residual vari-
ance of the dipole model (RV < 0.15) and visual inspection of activation spectra, time
courses, and scalp topographies. Only components reflecting cortical, ocular, or muscu-
lar activity were included in the analysis.

For each time window, each of the 371 resulting dipoles was weighted by the rele-
vance Ri of its associated independent component, described above. The areas of high
relevance were then described by a weighted dipole density plot using the EEGLAB plug-
in dipoleDensity (Miyakoshi, 2003).

Supplementary Movie S2 shows the result of this analysis over the full length of the
used 400 ms, by plotting the dipole density per cubic millimeter weighted by the rele-
vanceRi of each included dipole with a smoothing kernel of 12 mm.

The above-mentioned process of selection did not markedly influence this analysis.
Compared to all 1191 dipoles and averaged over the eight timewindows, the 820 rejected
dipoles (68.85%) carried 7.5% of the weights distributed by the classifier. Relative to all
1191 dipoles, a total of 87 dipoles received a relevanceweight larger than 1 standard devia-
tion in at least one of the time windows. These 7.3% of dipoles carried 77.82% of all total
weight distributed by the classifier. Four of these highly weighted dipoles (4.6%) were
rejected in the process explained above and not included in the analysis. These four rep-
resent 1.67% of the weight included in the analysis. Three belonged to the same subject.

Behavioral analysis Participants indicated their evaluation of each movement as ‘ac-
ceptable’ or ‘not acceptable’ through button presses. A paired-samples t-test was con-
ducted to compare the subjects’ mean reaction times. There was a significant difference
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between ‘acceptable’ button presses (mean 369.7 ms±66.9) and ‘not acceptable’ button
presses (mean 310.7 ms ±60.7); t(18) = 8.347, p<0.001. This calculation included only re-
action times between 100 and 1000ms.

No systematic effect reflecting this delay can be found in the ERPs used for classifi-
cation however see Figure 1, and Supplementary Figure S5). This, in combination with
an absence of relevance weights in the motor cortex (Supplementary Figure S5) and the
ERPs’ independence of eye movements (Supplementary Figure S6), leads us to conclude
that the behavioral delay has had no effect on the passive BCI.

PerformanceMeasures and Statistics

Theperformanceof the cursorwasoperationalizedas thenumberofmovements required
to reach the target. Trials at the end of a block that did not contribute to reaching a target
or hitting themaximumnumber of trials for that attempt, were discarded. This measure
does include those attempts that hit the maximum number of trials, which happened a
total of seven times to seven participants on the 4×4 grid, and to two participants on the
6×6 grid. This resulted in 88 pBCI-supported data points for the 4×4 grid, and 47 for the
6×6 grid.

As a comparison, a sample of around 7000 data points was taken using the same
measure from non-supported (random) blocks. This data is non-parametric and varies
greatly. Therefore, a resampling approachwas takenwhere the available sample of pBCI-
supported measures was repeatedly compared to a new random sample of the same
size of non-supported performance measures. This comparison was done through a
Wilcoxon rank-sum test. Out of 50 000 such comparisons, 98.02% of tests were signif-
icant at the α = 0.025 level for the 4×4 grid performance measures; for the 6×6 grid,
100.00%of testswere significantat this level. Ona4×4grid, non-supportedcursormove-
ment required on average (median) 27 trials to reach a target, whereas with BCI support,
this decreased to an average of 13. On a 6×6 grid, the median values were 90 and 23,
respectively.

The pBCI-supported performance was furthermore compared to ‘perfectly sup-
ported’ performance, where the cursor was reinforced as during the online sessions, ex-
cept automatically, with perfect accuracy. Here, allmovementswith an angular deviance
less than 45º were judged to be ‘correct’ and reinforced accordingly, and all others were
‘incorrect’, and their probabilities decreased as described in Supplementary Method 2.
The same procedure as above yielded significant differences to the pBCI-supportedmea-
sures for both the 4×4 grid (99.98% of tests atα = 0.025) and the 6×6 grid (100%). The
median perfectly supported performancemeasure on the 4×4 grid is 10movements, and
14movements on the 6×6 grid.

Additionally, the mean directional probabilities upon reaching the target in both on-
line grids (combined) were calculated. These are illustrated in Supplementary Figure S4.
Supplementary Table S2 lists the Bonferroni-adjusted results of pairwise post hoc tests
from a one-way ANOVA (F(7,105)=57.520, p<0.001) on this data. On average, the clas-
sifier has been able to reinforce the ‘correct’ directions significantly more strongly than
‘incorrect’ directions.
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Linear Dependency of Peak Amplitude
Figure 1 of the main manuscript shows a linear scaling of peak amplitudes with respect
to absolute angular deviance away from the target, projected by the filter weights of the
third time window. The eight groups of angular deviations were selected such that for
each single participant, at least 50 trials were present in each group, i.e., for an optimal
signal to noise ratio while maintainingmaximal angular resolution.

Figure 1 shows the same linear scaling in the grand average ERP (n = 19) at Fz. This
ERP has been further investigated using standard neurophysiological methodology.

For the derivation of the single electrode ERP, BrainVision Analyzer was used*. The
raw EEG data was first band-pass filtered from 0.5 to 45 Hz, and decomposed into statis-
tically maximally independent source signals through ICA. Individual components that
resembled eye movements and eye blinks were manually selected for removal based on
their time course and topography (e.g., Jung et al., 2001). Figure 1 shows the grand av-
erage ERP over all nineteen participants at Fz with these components removed. For a
comparison, Supplementary Figure S6 shows the grand average ERP at Fp1, Fp2, and Fz
for only the removed components. No systematic response is visible, pointing to cortical
causes of the differences. At Fz, where the cortical components peak around+3.9µV for
e.g. the 0◦ condition, the eye components show an amplitude of−0.37µV.

Statistical analysis focused on the systematic peak differences seen at Fz around 180
ms. A one-way ANOVA indicated a significant influence of angular deviance on peak am-
plitude (F (7, 126) = 47.243, p < 0.001). Post-hoc comparisons corrected for false dis-
covery rate are listed in Supplementary Table S3 and illustrated in Supplementary Figure
S7. The peak amplitudes differ significantly (p < 0.001) between the classes used by the
classifier. In between, the peak amplitudes scale linearly with angular deviance, as fit-
ted by a linear regression model using each group’s mean angular deviance as predictor
(b = −0.0035, F = 45.28, p < 0.001;R2 = 0.33). Classifier output followed a similar
trend, as in Figure 1 of the manuscript.

*Version 2.0.2.5859, Brain Products GmbH, Munich, 2012
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One by three, 4 × 50 trials

Training — Four by four, 5 × 120 trials
Online — Four by four, 1 × 120 trials

Online — Six by six, 1 × 120 trials

1 second

1 second

1 second

Figure 5.S1: Experimental Paradigm and Procedure. The experimental paradigm and proce-
dure. Left: Three different grid sizes were used in the experiment. Data from five blocks in
4×4 grids was used to calibrate the classifier, whichwas then applied to another 4×4 block,
and one block on a 6×6 grid. Data from the 1×3 grids has not been used in this paper. Each
cursor movement consisted of the cursor moving from one node to one of the directly ad-
jacent ones. The cursor could move horizontally, vertically, and diagonally over the grid.
Since the target was known and indicated, for eachmovement, it was possible to determine
a measure of correctness for each movement by means of calculating the angular deviance,
as in Supplementary Figure S2. Right: Detail of a 4×4 grid showing the cursor’s movement
animation.
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18°18°18° 63°63°63°

Figure 5.S2: Angular Deviance. Illustration of the angular deviance of two possible cursor
movements (north, and north-west) from the optimal path straight towards the target. An-
gular deviance was measured as the absolute deviation, in degrees, of the movement direc-
tion from a straight line to the target.

Figure 5.S3: Class Definition of the Classifier’s Training Set. The classifier was calibrated
on a subset of trials from a 600-trial calibration session. This set was selected by angular
deviance: Movements with an absolute angular deviance to the target of 0º were included
as ‘correct’, while movements with a deviance of 135º or more were included as ‘incorrect’.
This figure illustrates which of all possible movements on the 4×4 grid were included, and
in which category: Green represents ‘correct’, red ‘incorrect’. From the total of 600 trials
per participant on the 4×4 grids, this selection left 62.7 ± 7.8 ‘correct’ and 124.4 ± 8.9 ‘not
accepable’ trials per participant for the classifier to be calibrated on.
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Figure 5.S4: Directional Probabilities. Mean directional probabilities, relative to the target
from the cursor’s starting position, upon hitting the target, in the BCI-supported condition,
averaged over participants. Error bars represent the standard deviation. See Supplementary
Table S2 for significance tests.
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Figure 5.S5.1: LDA-projected ERPs. (This figure spans three pages; this is page 1 of 3.)
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Figure 5.S5.2: LDA-projected ERPs. (This figure spans three pages; this is page 1 of 3.)
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Figure 5.S5.3: LDA-projected ERPs. (This figure spans three pages; this is page 1 of 3.) The
classifier was calibrated on features spanning eight time windows of 50 ms each. For each
timewindow, theabovefigures showon the left: Source localisationviaweighteddipoleden-
sity of the process(es) focused on in that timewindow; right: Full-length ERPs, combined as
per that time window’s LDA filter, of eight groups of cursor movement, as well as the pro-
jected difference wave between ‘correct’ and ‘incorrect’ classes (i.e. the filter’s optimisation
target). Each figure’s actual time window, which actually contributed to classification, is
highlighted in grey.
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Figure 5.S6: Influence of EyeMovements on the ERP at Fz. The grand average ERP (n = 19) at
Fp1, Fp2, and Fz for only those components that contained strong eye movements and were
removed for neurophysiological analysis. No systematic response is visible.
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Figure 5.S7: Peak amplitudes around 180 ms for the eight groups of cursor movements. The
peak amplitudes differ significantly (p < 0.001 ***) between the classes used by the classifier.
In between, the peak amplitudes scale linearly with angular deviance, as fitted by a linear
regression model using each group’s mean angular deviance as predictor (b = -0.0035, F =
45.28, p < 0.001; R2 = 0.33). Statistically significant differences between adjacent groups are
indicatedaswell (p<0.05*). SeeSupplementaryTableS3 for exactfiguresof all comparisons.
Classifier output followed a similar trend, as in Figure 1 of the manuscript.

Figure 5.S8: Scalp Activity Series. Class-specific grand average scalp activities (n = 19), time-
locked to cursor movement, at the middle of each time of the eight time windows used for
classification. Left: Scalp activities of class 1, containing only cursor movements that went
directly towards the target. Right: Scalp activities of class 2, containing cursor movements
with an angular deviance of 135◦ ormore. EEG datawas first band-pass filtered from0.1 to 5
Hz as per the classification approach and re-referenced to the common average. See Figure 2
in the main manuscript and Supplementary Movie S1 for the class-correlated scalp activity
that the classifier focused on.
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Figure 5.S9: Example Online Cursor Behavior. Visualization of two online target selections.
Left: Trace of cursor movements over the grid. Each cursor movement only progressed one
node over the grid; extended straight lines thus reflect multiple movements. Right: Progres-
sion of normalized directional probabilities relative to 0º, with 0º being the direction to-
wards the target at the start of the grid. All directions started outwith equal probabilities, in-
dicated at trial 0. Each subsequent trial shows the directional probabilities after that trial’s
cursor movement was classified and the cursor was reinforced accordingly. The colors re-
flect the confusion matrix with the participant’s button presses being used as ground truth.
True positive (light green) indicates the cursor movement was correctly classified as ‘cor-
rect’. True negative (dark green) indicates a correctly classified ‘incorrect’ movement; false
positive (light red) an incorrectly classified ‘correct’ movement; false negative (dark red) an
incorrectly classified ‘incorrect’ movement. The top row shows a relatively slow online run
of 31 trials on a six-by-six grid. A number of misclassifications, especially near the middle,
delay the probabilistic model’s convergence towards the desired target direction. However,
the erroneous trials donot lead to an adverse biaswhile the correct classifications do system-
atically point towards the target, and the correct direction is found. The lower row shows a
shorter run of 14 trials with only twomisclassifications.
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Figure 5.S10: The neuroadaptive control loop. A stimulus or parameter change provokes an
automatic response from the user, whose biosignals aremonitored. The user’s response can
be classified from the gathered data, allowing the system to interpret the response in light
of the previously gathered user information and the current context. With this information,
the system updates its user model. Based on the user model and the current system status,
the systemmay decide on a new probe stimulus.

4× 4 Grids 6× 6 Grids
Participant TP TN CR TP TN CR

07 .91 .86 .89 · · ·
08 .91 .60 .77 · · ·
09 .81 .53 .71 · · ·
10 .83 .79 .81 .76 .75 .76
11 1.00 .83 .93 .88 1.00 .93
12 .83 .63 .76 .82 .64 .73
13 .67 .47 .59 .87 .38 .67
14 .75 .63 .70 .84 .36 .69
15 .82 .69 .75 .71 .82 .75
16 .52 .50 .52 .39 .10 .29
17 .58 .62 .59 .50 .68 .58
18 .67 .62 .65 .44 .53 .48
19 .80 .67 .75 .92 .65 .80
20 .71 .80 .74 .70 .62 .67
21 .88 .56 .76 .74 .45 .63
22 . 60 .67 .63 .40 .50 .43

Mean .77 .65 .72 .69 .58 .65

Table 5.S1: ]
Online classification rates for the 4×4 grid, and the 6×6 grid. TP = True Positives, TN = True

Negatives, CR = Classification Rate (combined TP and TN). This table lists the classification rates
for the online blocks, i.e. what percentage of classifier output agreed with the given definitions
of ‘correct’ and ‘incorrect’ movements. These definitions were the same as the ones used for

calibration: Movements with an angular deviance to the target of 0º were defined to be ‘correct’,
and those with a deviance of 135º or more were taken to be ‘incorrect’. The labels of all other
movements were subject to individual interpretation, and have therefore not been included in
this analysis. The table lists these rates for all participants that completed online blocks. From
the total of nineteen, this excludes the first three participants, who only performed offline

calibration blocks. A further three participants only performed 4×4 grids online.

200



Pairwise Comparison
180◦ 135◦ 90◦ 45◦ 0◦ −45◦ −90◦

135◦ 1.000 · · · · · ·
90◦ 0.004 0.003 · · · · ·
45◦ 0.000 0.000 0.000 · · · ·
0◦ 0.000 0.000 0.000 1.000 · · ·

−45◦ 0.000 0.000 0.304 1.000 0.000 · ·
−90◦ 0.000 0.000 1.000 0.000 0.000 0.006 ·
−135◦ 1.000 1.000 0.005 0.000 0.000 0.000 0.000

Table 5.S2: Bonferroni-adjusted pairwise comparisons of the mean directional probabilities
upon reaching the target. SupplementaryFigureS4 shows themeandirectionalprobabilities
upon reaching the target in both online grids, sorted by their angular deviance to the target,
which was fixed relative to the cursor’s starting position. Supplementary Table S2 lists the
Bonferroni-adjusted results of pairwise post-hoc tests from a one-way ANOVA (F(7,105) =
57.520, p < 0.001) on this data. On average, the classifier has been able to reinforce the ‘cor-
rect’ directions significantly more strongly than ‘incorrect’ directions.

Pairwise Comparison
0◦ ≤ 27◦ ≤ 56◦ ≤ 79◦ ≤ 90◦ ≤ 124◦ ≤ 153◦

≤ 27◦ 0.032 · · · · · ·
≤ 56◦ 0.001 0.075 · · · · ·
≤ 79◦ 0.000 0.000 0.020 · · · ·
≤ 90◦ 0.000 0.000 0.004 0.309 · · ·

≤ 124◦ 0.000 0.000 0.000 0.023 0.071 · ·
≤ 153◦ 0.000 0.000 0.000 0.021 0.066 0.507 ·
≤ 180◦ 0.000 0.000 0.000 0.023 0.071 0.520 0.531

Table 5.S3: Pairwise comparisons, adjusted for false discovery rate, of the mean peak ampli-
tudes at Fz for the eight angular categories. A one-way ANOVA indicated a significant influ-
ence of angular deviance on peak amplitude (F(7,126) = 47.24, p < 0.001). In this table are
listed the post-hoc comparisons—one-sided t-tests with pooled standard deviations, cor-
rected for false discovery rate—between the eight individual groups of cursor movement.
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Pairwise Comparison
0◦ ≤ 27◦ ≤ 56◦ ≤ 79◦ ≤ 90◦ ≤ 124◦ ≤ 153◦

≤ 27◦ 0.328 · · · · · ·
≤ 56◦ 0.000 0.002 · · · · ·
≤ 79◦ 0.000 0.000 0.023 · · · ·
≤ 90◦ 0.000 0.000 0.000 0.115 · · ·

≤ 124◦ 0.000 0.000 0.000 0.006 0.125 · ·
≤ 153◦ 0.000 0.000 0.000 0.308 0.311 0.829 ·
≤ 180◦ 0.000 0.000 0.000 0.311 0.829 0.979 0.952

Table 5.S4: Pairwise comparisons, adjusted for false discovery rate, of themean classifier out-
put for the eight angular categories. A one-way ANOVA indicated a significant influence of
angular deviance on classifier output (F(7,105) = 28.32, p < 0.001). In this table are listed
thepost-hoc comparisons—one-sided t-testswithpooled standarddeviations, corrected for
false discovery rate—between the eight individual groups of cursor movement.

Pairwise Comparison
0◦ ≤ 27◦ ≤ 56◦ ≤ 79◦ ≤ 90◦ ≤ 124◦ ≤ 153◦

≤ 27◦ 0.004 · · · · · ·
≤ 56◦ 0.000 0.007 · · · · ·
≤ 79◦ 0.000 0.000 0.009 · · · ·
≤ 90◦ 0.000 0.000 0.000 0.093 · · ·

≤ 124◦ 0.000 0.000 0.000 0.168 0.599 · ·
≤ 153◦ 0.000 0.000 0.000 0.014 0.161 0.134 ·
≤ 180◦ 0.000 0.000 0.000 0.004 0.046 0.404 0.227

Table 5.S5: Pairwise comparisons of themeanamplitudes in the third timewindow (150-200
ms) of the LDA-projected ERP. Supplementary Figure S5 shows LDA-projected ERPs. At Fz,
significant amplitude differences were found at around 180 ms following cursor onset (see
Figure 1 of the main manuscript and Supplementary Figure S7). This falls within the third
time window used by the classification system (150 to 200ms following cursor movement).
This table shows the results of pairwise comparisons using one-tailed permutation tests of
the mean amplitudes of the LDA-projected ERPs in that time window, between the eight
individual groups of cursor movement.
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Figure 5.M1: Movie S1. Event-related potential at electrode Fz, and class-correlated scalp ac-
tivity derived from the LDA filter weights of sequential 50-ms time windows, spanning the
400ms used for classification. Available online at https://doi.org/10.1073/pnas.1605155114

Figure 5.M2: Movie S2. Dipole densities weighted by relevance for classification in sequen-
tial 50-ms time windows, spanning the 400 ms used for classification. Available online at
https://doi.org/10.1073/pnas.1605155114
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Figure 5.M3: Movie S3. Online experimental stimuli accompanied by classification output,
illustrating the online process and outcome.
Available online at https://doi.org/10.1073/pnas.1605155114

Figure 5.M4: Movie S4. Offline experimental stimuli.
Available online at https://doi.org/10.1073/pnas.1605155114
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| Chapter 6 Supplementary Information

-30 mm -10 mm 0 mm +10 mm +30 mm -50 mm -40 mm -10 mm 0 mm +10 mm

0 mm +10 mm +30 mm +40 mm +50 mm

Condition: Combined (attraction first)
Classes: Towards v towards

Top 5% of dipoles carry 17.50% of the weight. Kurtosis: 4.99

-30 mm -10 mm 0 mm +10 mm +30 mm -50 mm -40 mm -10 mm 0 mm +10 mm

0 mm +10 mm +30 mm +40 mm +50 mm

Condition: Combined (attraction first)
Classes: Away v away

Top 5% of dipoles carry 22.13% of the weight. Kurtosis: 8.29

-30 mm -10 mm 0 mm +10 mm +30 mm -50 mm -40 mm -10 mm 0 mm +10 mm

0 mm +10 mm +30 mm +40 mm +50 mm

Condition: Combined (attraction first)
Classes: Towards v away (bad)

Top 5% of dipoles carry 18.90% of the weight. Kurtosis: 3.63

-30 mm -10 mm 0 mm +10 mm +30 mm -50 mm -40 mm -10 mm 0 mm +10 mm

0 mm +10 mm +30 mm +40 mm +50 mm

Condition: Combined (attraction first)
Classes: Towards v away (good)

Top 5% of dipoles carry 19.27% of the weight. Kurtosis: 3.91
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Figure 6.S1: Weighted dipole density plots showing the relevance of cortical areas to the two
valence-focused and two salience-focused classifiers separately: a TvT, b AvA, c TvT+ and d
TvT–, all for the attraction-first group.
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-30 mm -10 mm 0 mm +10 mm +30 mm -50 mm -40 mm -10 mm 0 mm +10 mm

0 mm +10 mm +30 mm +40 mm +50 mm

Condition: Combined (repulsion first)
Classes: Towards v towards

Top 5% of dipoles carry 20.21% of the weight. Kurtosis: 8.63

-30 mm -10 mm 0 mm +10 mm +30 mm -50 mm -40 mm -10 mm 0 mm +10 mm

0 mm +10 mm +30 mm +40 mm +50 mm

Condition: Combined (repulsion first)
Classes: Away v away

Top 5% of dipoles carry 19.48% of the weight. Kurtosis: 5.93

-30 mm -10 mm 0 mm +10 mm +30 mm -50 mm -40 mm -10 mm 0 mm +10 mm

0 mm +10 mm +30 mm +40 mm +50 mm

Condition: Combined (repulsion first)
Classes: Towards v away (bad)

Top 5% of dipoles carry 22.92% of the weight. Kurtosis: 10.22

-30 mm -10 mm 0 mm +10 mm +30 mm -50 mm -40 mm -10 mm 0 mm +10 mm

0 mm +10 mm +30 mm +40 mm +50 mm

Condition: Combined (repulsion first)
Classes: Towards v away (good)

Top 5% of dipoles carry 21.90% of the weight. Kurtosis: 6.86
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Figure 6.S2:Weighted dipole density plots showing the relevance of cortical areas to the two
valence-focused and two salience-focused classifiers separately: a TvT, b AvA, c TvT+ and d
TvT–, all for the repulsion-first group.
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