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Abstract
Passive brain-computer interfaces (passive BCIs, pBCIs) enable computers to unobtrusively decipher
aspects of a user’smental state in real time from recordings of brain activity, e.g. electroencephalo-
graphy (EEG).When used during human-computer interaction (HCI), this allows a computer to
dynamically adapt for enhancing the subjective user experience. For transitioning from controlled
laboratory environments to practical applications, understanding BCI performance in real contexts is
of utmost importance. Here, Virtual Reality (VR) can play a unique role: both as a fully controllable
simulation of a realistic environment and as an independent, increasingly popular real application.
Given the potential of VR as a dynamic and controllable environment, and the capability of pBCIs to
enable novelmodes of interaction, it is tempting to envision a futurewhere pBCI andVR are
seamlessly integrated.However, the simultaneous use of these two technologies—both of which are
head-mounted—presents new challenges. Due to their immediate proximity, electromagnetic
artifacts can arise, contaminating the EEG. Furthermore, the activemovements promoted byVR can
inducemechanical andmuscular artifacts in the EEG. The varying body postures and display
preferences of users further complicate the practical application of pBCIs. To address these challenges,
the current study investigates the influence of body posture (sittingVersus standing) and display
media (computer screenVersus VR) on the performance of a pBCI in assessing cognitive load.Our
results show that these conditions indeed led to some changes in the EEGdata; nevertheless, the ability
of pBCIs to detect cognitive load remained largely unaffected.However, when a classifier trained in
one context (body posture ormodality)was applied to another (e.g., cross-task application),
reductions in classification accuracywere observed. AsHCImoves towards increasingly adaptive and
more interactive designs, thesefindings support the expansive potential of pBCIs inVR contexts.

1. Introduction

1.1. Current and future uses of passive brain-
computer interfaces (pBCIs)
Since their initial definition [1, 2], passive brain-comp-

uter interfaces (passive BCI, pBCI) have demonstrated

the capability of decoding different cognitive states in

real time from brain activity. As such, they can provide

real-time information to a computer about its user’s

cognitive states, including surprise [3]workload [4, 5] or
error-perception [6], as well as affective states [7]. This
creates an implicit human-computer communication

channel and enables technology to become neuroadap-

tive [8]. This technological ability to decode and adapt to
human mental states, unobtrusively and in real time,

can translate into a wide range of use cases across fields

like education [9], driving [10, 11], aviation [12, 13],
neuromarketing [14], gaming [15] andmore.

In the context of an increasingly digitized world
and the rise of the Internet of Things, this diversity of
use cases and versatility make the pBCI technology
attractive for future adoption. As society transitions
into a more cyber-connected age, the need for more
intuitive modalities of interaction with machines that
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lead to a more immersive communication will
increase [16]. What makes pBCI a good candidate to
fulfill this role is its reliance on natural streams of brain
activity, that require no effort on the human part [2]. A
recent surge in BCI research innovations [17] and
commercial interest [18] in neuroscience in general
and pBCI in particular [19] is indicative of the current
momentum aiming at widespread adoption of BCI.

This perspective is supported by several examples
of pBCI that are aimed at real-world use [20]. Never-
theless, the transition to applications in our daily lives
is still ongoing and several hurdles need to be over-
come. The reason for this is multi-fold. EEG devices
are still impractical [18], they tend to be unreliable in
uncontrolled environments [21], and they require
time-consuming calibration phases [22]. Specifically,
the calibration phases are necessary because classifiers
have been shown to be sensitive to the task [23], sub-
ject [24], sensors [25], and even the context in which
they are being applied [26]. Therefore, it is important
to investigate if pBCIs remain performant across var-
ious situations, without the need to re-train classifiers.
In light of this, we here assess to what extent pBCI per-
formance is influenced by different contexts, particu-
larly different postures and virtual environments. We
refer to this as cross-context performance.

1.2. The impact of body posture on brain activity
andpBCI performance
Most human activities, especially at the workplace,
involve intermediary positions, like daily office work,
where we constantly switch between sitting, standing,
and various postures. Even in more specialized work-
places, such as surgery, doctors might stand for
prolonged periods but switch to sitting every so often.
Similarly, working at a desk with a computer, a person
might stretch, adjust their position, or lean back. This
constant movement is an essential characteristic of
human bodies and it helps us to better interact with
and learn from the environment. Thus, this fact needs
to be taken into consideration when assessing the
integration of BCI into our daily lives by looking at the
effective use of the technology across body positions.
While both sitting and standing are common postures,
standing has been less examined in BCI research
despite studies that found potential variations in
neural signals [27–29].

For instance, in the field of Mobile Brain/Body
Imaging (MoBI) [30, 31], differences in brain activity
between sitting and standing have been observed.
Also, an fMRI investigation found that, in comparison
with a supine position, the upright posture increases
the high-frequency oscillatory activity [27].

Concerning EEG, it is currently unclear how body
posture affects the signal. Some studies suggest that
there are no significant differences in spectral varia-
tions between the sitting and the standing positions for
rest alpha (8–12 Hz) [28]. Meanwhile, [32] did find

differences at the level of the alpha band, albeit for
patients suffering from a balance disorder. Other find-
ings indicate an increase in power for fast oscillatory
bands such as beta and gamma if participants stand up
[33, 34]. Interesting insights come from complexity
analyses in recent studies, which show that standing
induces smaller values of brain activation compared to
walking [29]. Complexity variations across postural
conditions have proven valuable for entropy-based
BCIs [35]. A potential explanation for such differences
comes from [36]. The authors argue that changing
positions might result in a physical shift of the brain,
and the associated small changes in cerebrospinal fluid
could affect the electrical fields, a claim that has also
been tested and confirmed by [37]. Alternatively,
researchers speculate the underlying causes could be
related to the fact that an upright position determines
the aggregate activity of the trunk and muscle activity
variations [38]. This could lead to more muscle arti-
facts being mixed with the cortical activity, which
might also pose an obstacle to the detection and classi-
fication ofmental states (muscle argument). In the con-
text of BCI, differences have been observed between
sitting and standing postures, but only in the context
of active motor imagery [39, 40] or P300-based BCI
[41]. The need for this work is especially pressing in
light of research [38] and new technologies such as VR
that require pBCI users to stand.

Additionally, recent health findings and recom-
mendations emphasize the need to decrease sitting
time. While most high-income jobs are performed at
desks [42], a significant increase in mortality can be
observed among those who sit for long hours daily
[43], irrespective of other factors such as smoking or
regular exercise [44]. As clinical conclusions start to
accumulate and public health communication begins
to take effect, we can see a rise in standing desk pur-
chases [45], both in the educational sector [46] and the
corporate sector [47]. Studies that contrasted the cog-
nitive performance in different body postures support
the benefits of this growing trend, suggesting that
brain efficiency is higher during standing and sitting
compared to a supine position [48] and an increase in
attention can be observed when standing compared to
sitting, in tasks that simulate attending lectures [49] or
performing psychomotor vigilance tasks [50].

Considering all the aforementioned factors, we take
a first step here towards comparing the robustness of
pBCI during sitting and standing. The standing posture
serves as a notable instance of various potential body
positions thatmay becomepertinent for practical appli-
cations of this technology. To the best of our knowl-
edge, there are no existing studies that have investigated
the impact of body postures onpBCI performance.

1.3. Virtual reality’s prospective impact on pBCI
Virtual reality (VR) represents one of the biggest
present-day shifts in the realm of HCI, specifically
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moving users from seated tomoremobile positions, as
espoused by start-ups and commercial giants alike
[51]. It remains to be seen if VR will become the
promised default we turn to for social media, remote
work, and games, but the general abundance of VR
devices and increased number of users, as well as the
growing interest and investment in this technology in
industries such as healthcare [52] and education [53]
speak in favour of, at the very least, widespread
adoption of the technology. With VR and pBCI both
gaining ground, we must assess their compatibility
with each other. The questions posed here are exactly
those that need to be answered for this assessment:
How is a pBCI classifier affected by the presence of the
VR device itself, and how is it affected by the different
postures (sitting and standing) primarily afforded
byVR?

So far, the scientific literaturemerging BCI andVR
generally explored how decoded brain activity can be
utilized to manipulate virtual objects or navigate in
virtual environments [54–56]. As such, these papers
mostly focus on active BCI, while there are much
fewer examples of merging pBCI and VR [57–59]. For
instance, some studies involved passively monitoring
cognitive workload in virtual environments [60, 61],
while others used such information to adapt the diffi-
culty or other characteristics of a task [62, 63] and pro-
mote engagement [64]. This line of research lays the
foundation for neuroadaptive work training or educa-
tional applications in VR, promising truly persona-
lized learning settings [65]. Similarly, pBCI-VR studies
created customized therapeutic experiences by adapt-
ing virtual stimuli to real-time translated emotional
user states [66–68]. Specifically, VR proves to be a ben-
eficial tool in exposure therapy for mental disorders
like height phobia (acrophobia) or social anxiety, as it
offers the possibility to easily and automatically mod-
ulate such phobic stimuli (e.g. the number of avatars in
an audience in the context of a public speech) to foster
the targeted psychological changes according to psy-
chiatric individual needs [69]. This feature is not
necessarily as readily available or easy in ecological
conditions. Such qualities render VR an indispensable
resource for studying human-machine interaction
and a perfect complement to pBCIs both for cognitive
and affective state elicitation and neuroadaptive pur-
poses [65].

An interesting example of a potential way pBCIs
might be used by real VR consumers is a recent appli-
cation of a ‘concentration’ decoder in a popular VR
game called Skyrim VR . In this modification, players’
brain activity is sensed via a Muse commercial EEG
headband [70]. Depending on the achieved cognitive
focus level, the game character can ‘recharge’ its pow-
ers and better fight virtual enemies. We speculate that
such games will most probably be played in a dynamic
fashionwhile standing.

It is unclear if the pBCIs’ capability in cognitive
state decoding is impacted bymounting a second piece

of equipment over an EEG cap. The worries stem from
EEG sensors’ susceptibility to pressure variations and
external artifacts, which might in turn impact the sig-
nal the classifier is based on. Prior research investi-
gated and partly confirmed this signal-to-noise ratio
(SNR) argument [71, 72].

In addition to issues of user comfort [73, 74], the
alternations in EEG signal quality when mounting an
HMDVR device on top of an EEG cap were studied by
[71] using an oddball paradigm in 3 display modalities:
HMD-VR, cave automatic VR (CAVE VR), and comp-
uter screen. Their analyses revealed that although the
HMD-VR and EEG combination is feasible and event-
related potentials were valid for all conditions, a custom
modification of the HMD strap might be needed to
improve the SNR. Another study discovered the signal
was unaffected in frequencies under 50Hz, but over this
threshold,HMDsdo introduce large artifacts [72].

These findings are valuable insights for the VR-
EEG research and applications, but the impact of
HMD-VR on pBCIs’ decoding function has yet to be
investigated. While the general impact of VR usage on
pBCI requires more research, the role of user posture
in VR-EEG research also needs a closer look. Notably,
standing is a highly used posture in VR experiences
[75], adding another layer of complexity to the interac-
tion between these two technologies. Nonetheless,
most VR-EEG studies still involve performing immer-
sive tasks while sitting.

1.4. Investigating pBCI performance across
different conditions
In the previous paragraphs, we emphasized the
importance of assessing the pBCI capabilities in more
realistic conditions. In the study presented here, we are
taking steps towards this goal. It is, of course, not
feasible to anticipate and evaluate across all potential
settings. Therefore, our work focused on two impor-
tant dimensions: body posture and presentation
modality. More specifically, a within-subject design
was used to compare the performance of a mental
workload classifier between sitting versus standing
body posture, and VR versus computer screen pre-
sentation modality, as well as the differences in signal
across the four possible conditions. We chose to
investigate a workload paradigm because there are
clear, validated signals associated with high Versus low
levels of cognitive workload [23, 76, 77]. Here, an
increase in frontal theta and a decrease in parietal
alpha should be expected when a high mental work-
load is experienced, while viceversa is anticipated for a
low level of workload. Therefore, we specifically chose
to look at the alpha and theta band changes during rest
time to identify the signals indicating low workload.
Both alpha and theta bands during rest or internally
directed attention states have been previously asso-
ciated with the brain’s default mode network (DMN)
[78, 79]. We assume that adding a head-mounted
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device or standing up would increase the cognitive
effort required for the task, causing a switch to an
extrinsic mode network (EMN) [79] and resulting in
alpha and theta bands changes. Furthermore, shifts of
these alpha and theta baselines might affect the
calibration outcomes [80] for a brain-computer inter-
face, potentially resulting in decreased classification
performance. We also addressed cross-context appli-
cation capabilities by looking at the generalizability of
theworkload classifier in the different contexts of body
postures and task presentation modalities. Our
research questions and hypotheses were the following:

RQ1: Does the modality of task presentation or
posture affect the power in the rest alpha and rest theta
frequency bands, the signal-to-noise ratio and muscle
activity?

H1.1. Variations in the modality of task presenta-
tionwill have a significant impact:

H1.1.1. on the parietal rest alpha and frontal rest
theta activity

H1.1.2. on the signal-to-noise ratio
H1.2. Variations in posture will have a significant

impact:
H1.2.1. on themuscle signal
H1.2.2. on the parietal rest alpha and frontal rest

theta activity
H1.2.3. on the signal-to-noise ratio
More specifically, we expected significant differ-

ences in the power of frontal rest theta and parietal rest
alpha frequencies between VR and computer screen
modalities, as well as sitting and standing postures.
Additionally, we predicted differences in the signal-to-
noise ratios based on both task presentation modality
and posture. We expected to see stronger muscle sig-
nal in the standing posture condition.

RQ2: Does the modality of task presentation or
posture matter for the pBCI’s ability to decode mental
states?

We postulated that the decoding accuracy would
significantly vary depending on the context due to
potential alterations in the EEG signal patterns due to
changes associated with muscle activity during stand-
ing orwith the addition of VR devices.

H2.1. The modality of task presentation during
task execution will significantly affect the pBCI’s abil-
ity to decodemental states.

H2.2. The body posture during task execution will
significantly affect the pBCI’s ability to decode mental
states.

RQ3: How well can classifiers generalize across
body posture and stimulus presentation modality
conditions?

H3: Changes between conditions in body posture
and presentation modality significantly impact the
cross-context application performance of a pBCI. It is
hypothesized that classifiers trained in one context
(e.g., sitting while viewing a computer screen) may
show reduced performance when tested in a different
context (e.g., standing while using VR), due to the

different cognitive and physical conditions associated
with these contexts.

2.Methods

2.1. Participants
A pilot phase involving 3 participants was conducted
before the official study began. This helped us find
suitable adjustments to maximize participants’ com-
fort in the VR conditions. Afterward, 24 participants
were recruited. Two participants were excluded from
the final analyses because impedances on the electro-
des could not be reduced to an acceptable level (under
20 kΩ) or technical software issues during the record-
ing. The final sample had an equal representation of
sexes, consisting of 11 males and 11 females, with a
mean age of 27.70 years (SD= 4.78). Participants gave
informed consent before the start of the session. Ethics
approval was obtained through the institution’s ethics
committee.

2.2. Apparatus andmaterials
2.2.1. Computer screen andVR conditions setup
In the computer screen (CS) modality condition,
participants sat (CS-sit) or stood upright (CS-stand) in
front of a 61 cm LCD monitor about one meter away
with the top of the monitor approximately aligned
with the top of the participant’s head. In the standing
condition, a monitor stand was placed under the
monitor to adjust for the height.

For the VR modality (VR) condition, an HP
Reverb G2 Omnicept [81] HMD-VR Headset was
applied over the EEG cap. Before every VR condition
(VR-sit and VR-stand), an eye calibration was per-
formed with the headset’s internal software, which
also helped ensure the same headset positioning across
participants. To familiarise themselves with the VR
environment, the participants were given 3–5 min
before the first VR condition to look around the vir-
tual space. We used the NightSkyPlatform in Win-
dows Mixed Reality feature to project a virtual
computer screen as in the CS modality condition, as
seen infigure 1. The virtual screenwas placed in a stan-
dardway, at the edge of a circular standing platform.

Participants were instructed to position them-
selves exactly in front of the virtual screen and in the
middle of the platform before starting the task. The
same experimental task was presented on the real and
virtual computer screen in the CS and VR conditions,
respectively.

2.2.2. Theworkload-inducing task
The task, which was presented 4 times for each
participant (once per condition), was a previously
tested paradigm [23, 82] called the ‘sparkles paradigm’.
Simulation and Neuroscience Application Platform
(SNAP) [83] was used to present the stimuli. The task
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consisted of 40 10-second trials of alternating high
workload and no workload trials (20 high, 20 with no
workload). These trials were presented in two blocks,
with a self-paced break in between (20 total trials for
each block, each resulting in 200 seconds of EEG).
During the high workload conditions, participants
were presented with an equation of the form ‘A—B’
on a black background. A could be a number between
200 and 1200 and B ranged from 6 to 19, not including
10 and 15. The participants’ task was to continuously
subtract B fromA until the equation disappeared from
the screen. For example, if the equation appearing on
the real or virtual screen was 1103–7, participants had
to mentally calculate 1096, 1089, 1082. To make sure
the participants understood the task, we gave a trial
runwith instructions at the beginning.

In the no workload condition, a crosshair was pre-
sented in the middle of the screen. For this part, we
instructed participants to relax with open eyes by
either trying to think of nothing and focus on their
breathing or choosing in advance a relaxing memory
to bring back intomind.

In half of the trials, under both high and no work-
load conditions, 10 small ‘sparkles’ moved smoothly
across the screen following random paths created by
Perlin noise. This served as a visual distraction and
assisted in balancing eye movements evenly across dif-
ferent classes.

To ensure engagement, participants had to type in
the number they arrived at for 25%of the trials if in CS
modality or verbally communicate the number if in
VRmodality, which was then typed into the system by
the experimenter. The mean accuracy of their respon-
ses was 68%,with a variance of 8.

2.2.3. EEG recording
For EEG recording, 64 active actiCAP slim gel electro-
des (Brain Products GmbH, Gilching, Germany) were
used according to the 10–20 international system [84]
and the signal was sampled at 500 Hz using an

actiCHamp amplifier. The electrodes were referenced
to FCz and the ground electrode was set on the TP9
electrode.We chose this configuration to deal with the
potential friction with the VR device in the frontal
region. All electrode impedances were kept under 20
kΩ. The VR device’s incorporated sensors allowed the
recording of heart rate, eye-tracking, and a measure of
cognitive load. While these measures were recorded at
the same time as the EEG signal, they will be used for
subsequent analyses not present in this paper to
explore other research questions. The Lab Streaming
Layer (LSL) [85] was used to synchronize the channel
streams.

2.2.4. Questionnaires
To account for the potential confounding effects of
susceptibility to VR sickness, participants completed
the short version of The Motion Sickness Suscept-
ibilityQuestionnaire (MSSQ) [86]. The responses were
inspected by the experimenter on the spot, but they
were not included in the data analysis. Also, after each
VR condition, the Virtual Reality Sickness Question-
naire (VRSQ) [87] was completed, which gives a score
of motion sickness measurement index in virtual
reality. None of the participants indicated any issues
related tomotion sickness.

2.3. Procedure
The experiment consisted of 4 repetitions of the
sparkles workload-inducing paradigm, while partici-
pants’ EEG data was recorded. The order of the
conditions was decided randomly (2 by 2 conditions,
hence 24 possible orders). The conditions were the
following:

1. Computer screen modality and sitting posture
(CS-sit);

2. VRmodality and sitting posture (VR-sit);

Figure 1.Task display in theVR conditions.
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3. Computer screen modality and standing posture
(CS-stand);

4. VRmodality and standing posture (VR-stand).

One task lasted for about 8 min. Each trial lasted
10 seconds, resulting in 200 seconds of EEG data per
trial class in each condition. The overall experiment
per participant, including consent, EEG preparation,
VR familiarisation and self-paced breaks lasted about
2.5 h. Figure 2 displays the setup for each of the 4
conditions.

2.4.Data processing
2.4.1. Signal alterations
We processed the data in different ways to extract
measures corresponding to the muscle activity
hypothesis, the SNR hypothesis, the frontal rest theta
and parietal rest alpha power, and the classification
accuracies. Before these analyses, the raw EEG data
was firstly pre-processed. We removed the non-
experimental data segments such as EEG recorded
during self-paced breaks between blocks. Then, we
removed the noisy channels and filtered the data using
a FIR forward-backward (non-causal) Kaiser filter at a
0.5Hz cutoff edge. For this, we used the clean_artifacts
EEGLAB function with a minimum channel

correlation of 0.8 and a line noise criterion of 4.
Afterward, we applied a spherical interpolation
method and re-referenced the channels to a common
average reference. Then, independent components
were obtained with the AMICA algorithm [88]. To
improve the decomposition, the automatic sample
rejection parameters of AMICAwere used, in line with
[89]. Before each analysis, the obtained data was
initially downsampled to 250 Hz. After these steps, the
resulting datasets will be referred to as post-ICA
datasets going further.

The EEGLAB [90] and BCILAB 1.4-devel [91]
toolboxes integrated into MATLAB R2022a (The
Mathworks, Inc., Natick, MA, USA) were used for
EEG data analysis and BCI classification and training,
respectively. RStudio [92] was used for statistical
analyses.

2.4.2.Muscle activity
To test themuscle activity hypothesis, the independent
components of the post-ICA datasets were automati-
cally labelled with the ICLabel algorithm (version 1.4,
default settings) [93]. After a dipole fitting using the
DIPFIT plugin from EEGLAB, datasets containing
only muscle components were generated by removing
the non-muscle components after the automatic
labelling. The data was further filtered with a FIR filter

Figure 2.Experimental setup for the study’s 4 conditions: CS-sit (Computer Screen, sitting), VR-sit (Virtual Reality, sitting), CS-stand
(Computer Screen, standing), andVR-stand (Virtual Reality, standing).
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using a Hamming window to obtain the broadband
signal (1–100 Hz passband edges). After segmenting
the data in 1-second epochs, the log power spectral
densities (log PSD) were computed using Welch’s
method [94] for 5 regions, each including 9 channels:
frontal (Fp1,FpZ, Fp2, AF3, AFz, AF4, F1, Fz, F2),
central (FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2),
occipital (P1, Pz, P2, PO3, POz, PO4, O1, Oz, O2),
temporal-left (FP9, F7, FT7, FC5, T7, C5, TP7, CP5,
P7) and temporal-right (F8, FC6, FT8, FT10, C6, T8,
CP6, TP8, P8). These region-specific selections of
electrodes can be seen in figure 3. The final statistical
analyses compared these log PSD values averaged
across channels between the sit and stand posture
conditions.

2.4.3. SNR
The presumedHMD-VR and standing posture impact
on the EEG were examined by comparing the SNR
values between the conditions. We operationalized
SNR in twoways: the SNR corresponding to theta, and
the SNR corresponding to alpha. Specifically, we
averaged the variance of theta over all electrodes and
the variance of alpha across all electrodes, according to
the following equations:

( ( ))
( ( ))

=SNR
mean alphaBand

mean broadBand

var

var
alpha

( ( ))
( ( ))

=SNR
mean thetaBand

mean broadBand

var

var
theta

Before these calculations, the band varience values
were obtained after applying corresponding bandpass
FIR filters with a Hamming window for theta (4–7 Hz

passband edges), alpha (8–13 Hz passband edges), and
broadband (1–40 Hz passband edges) and then epoching
the data in 1-second segments. The obtained SNR values
were averaged across channels and epochs for each sub-
ject and each posture-modality combination. Then, these
were statistically comparedacross conditions.

2.4.4. Signal of interest
To investigate the impact of posture and modality on
the signal of interest, further processing steps were
applied on the post-ICA datasets. The data was filtered
with a bandpass FIR filter (1–100 Hz passband edges)
using a Hamming window and then segmented in
1-second epochs for high workload and no workload
trials, respectively. Then, the eye components were
removed with the ICLabel algorithm. For the alpha-
parietal brain region, 5 channels (Pz, P1, P2, CPz, and
POz) were selected. Also, 5 channels (AFz, F1, Fz, F2,
FCz)were chosen for the theta frontal region.

We operationalize the signal of interest as the rest
(no workload) parietal alpha band and the rest (no
workload) frontal theta. Thus, only no workload trials
were selected for both the alpha and theta band activity
investigation. These two frequency bands were ana-
lyzed separately to assess their individual contributions
to cognitive workload and their response to different
conditions. Log PSD values were obtained for each par-
ticipant by averaging channel log PSD across all relevant
electrodes for each condition and frequencyband.

2.4.5. pBCI performance
For the binary classification of the recorded signal in
high versus low workload, we used the post-ICA

Figure 3.Channel selections for the frontal (green), central (orange), occipital (purple), temporal left (yellow), and temporal right
(blue) in themuscle power analysis.
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datasets. Then, we identified the eye artifact compo-
nents with the ICLabel and removed them with 15%
residual variance after the automatic labelling. We
applied the filter bank common spatial patterns
(FBCSP) method [95] on the epoched data to obtain
the features corresponding to the power in the theta
(4–7Hz) and alpha (8–13Hz) frequency ranges. Linear
discriminant analysis (LDA) with a 5-fold cross-
validation repeated 5 times was used to separate the
classes. The calibration data comprised the first 80%of
the corresponding dataset. An online phase was
simulated in an offline manner as well by applying the
obtained model to the last 20% of each corresponding
dataset. This cross-validation was performed exclu-
sively on the calibration data. Going further, these will
be referred to as calibration data and test data. This split
was chosen to replicate a typical BCI application
scenario where the system undergoes a distinct train-
ing (calibration) phase followed by a testing phase. The
features used for the classification were 12 spatial
filters for the FBCSP method. The pBCI decoding
performancewas estimated as the average classification
accuracies obtained on the test data. These accuracies
were then statistically compared between conditions.

2.4.6. Cross-context application performance
For the cross-context application analysis, we first
trained a classifier on the calibration data of each
subject and each condition using the same approach
described in the previous section for the post-ICA
datasets. Then, the resulting classifier was applied to
the same subject’s test data for each condition. For
example, a classifier that was trained on the calibration
data for the CS-sit condition for subject 1 would be
applied to the same subject’s test data for the
conditions CS-sit, CS-stand, VR-sit, and VR-stand,
sequentially. The same classification method as in the
previous sectionwas applied. In this case, wewill name
such data for 4 conditions the cross-context test data.
We define here cross-context application performance
as the average classification accuracy obtained on the
cross-context test data. A new variable with 4 levels

called cross-context condition was created, corresp-
onding to each of the cross-context test accuracies.
Depending on the calibration and testing condition
pair, each accuracy value was assigned one of the
following levels: fully congruent, fully incongruent,
congruent modality & incongruent posture, congru-
ent posture & incongruent-modality. More specifi-
cally, if the cross-context test data originated in the
samemodality condition and the same posture condi-
tion as the calibration data the classifier was obtained
on, the cross-context condition level was set to fully
congruent. Otherwise, if the cross-context test data
originated in both a different modality and posture
condition compared to the calibration data, the cross-
context condition level was set to fully incongruent. If
the cross-context test data originated in modality that
is different from its calibration data, but the same
posture, the cross-context condition level was set to
congruent modality & incongruent posture. Lastly, if
the cross-context test data originated in modality that
is different from its calibration data, but the same
posture, the cross-context condition level was set to
congruent posture & incongruent modality. Figure 4
illustrates this logic. The cross-context condition
variable was subsequently used in statistical analyses as
an independent variable.

2.5. Statistical analyses
The investigation on muscle activity employed a
comparison between the sitting and standing posture
for 5 channel regions with t-tests after a normality
assumption inspection. For signal analyses and pBCI
decoding performance tests we performed two-way
analyses of variance with interactions (2 × 2 factorial
repeated-measures ANOVA). The two-way ANOVAs
were built to assess posture and modality’s impact on
each described dependent variable (average SNRs,
signals of interest and pBCI decoding performance).
Prior to performing the analyses, the assumptions of
two-way ANOVAs were checked. The residual nor-
mality assumption was visually inspected through QQ
plots. For the cross-context application performance

Figure 4. Level assignment logic to the cross-context condition variable.
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analysis, the cross-context condition variable was used
as an independent factor in a one-way repeated-
measures ANOVA model to predict the cross-context
test accuracies. If main effects were found to be
statistically significant, estimatedmarginalmeans with
Bonferroni adjustment were used to perform post-hoc
pairwise comparisons. To further investigate the
equivalence of groups when no significant main effect
or no significant differences were found, the two-one
sided tests (TOST) [96] procedure was applied for all
investigated analyses. A p-value of 0.05 was chosen as
the significant threshold for all TOST analyses. As the
CS-sit condition was considered to represent the
control condition, we chose an epsilon of the standard
deviation of the corresponding measures obtained in
this condition. Therefore, the standard deviation of
the mean muscle power in CS-sit, the standard
deviation of the mean rest alpha and theta power in
CS-sit, the standard deviation of the mean alpha SNR
and theta SNR in CS-sit, and the standard deviation of
the pBCI accuracies in CS-sit were chosen as epsilon
values for each corresponding analysis case.

3. Results

3.1. Signal alterations results
3.1.1.Muscle activity
A paired t-test was performed to compare the band
power between the sit and stand condition for each of
the 5 channel regions, with the hypothesis that the band
power in the standing posture was significantly greater
than in the sitting posure. For the occipital region, the
results indicated that the band power in the standing
posture (M = −3.977, SD = 8.810) is greater than the
bandpower in the sitting posture (M = −4.549,
SD = 8.608) (p = .041). The muscle bandpower in the
standing posture (M = −5.440, SD = 5.723) was not
greater than bandpower in the sitting condition
(M = −5.431, SD = 6.159) (p = .507) for the frontal
region. The TOST procedure with an epsilon of the
standard deviation of this channel region’s CS-sit mean
muscle power revealed that the sit and stand mean
muscle power groups are equivalent (mean differ-
ence = 0.009, epsilon = 6.375, p < .001) in the frontal
region. Also, the muscle bandpower in the standing
posture (M=−7.091, SD= 8.195)was not greater than
bandpower in the sitting condition (M = −7.364,
SD= 7.919) (p= .176) for the central region. TheTOST
procedure with an epsilon of the standard deviation of
the central region’s CS-sit meanmuscle power revealed
that the sit and stand mean muscle power groups are
equivalent (meandifference=−0.273, epsilon= 7.970,
p < .001) in the central region. Similarly, the muscle
bandpower in the standing posture (M = −1.431,
SD = 6.341) was not greater than bandpower in the
sitting condition (M = −1.843, SD = 6.678) (p = .18)
for the temporal right region. According to the TOST
procedure with an epsilon of the standard deviation of

the temporal right region’s CS-sit mean muscle power,
the sit and stand mean muscle power groups are
equivalent (meandifference=−0.411, epsilon= 7.367,
p < .001) in the temporal right region. Lastly, the
muscle bandpower in the standing posture
(M = −1.431, SD = 6.341) was not greater than
bandpower in the sitting condition (M = −1.834,
SD= 6.678) (p= .18) for the temporal left region. The
TOST procedure using an epsilon of the CS-sit mean
muscle power standard deviation in the temporal left
region showed that the sit and stand mean muscle
power groups are equivalent (mean differ-
ence = −0.283, epsilon = 6.740, p < .001) in the
temporal left region.

3.1.2. SNR
The first ANOVA test revealed no significant main
effect of modality on alpha SNR values, F(1, 21) =
1.181, p= .289. TwoTOSTprocedures with an epsilon
of the standard deviation of the alpha SNR in the CS-
sit condition were conducted for the CS and VR
modality sub-groups within the sit and stand groups.
Within the sit condition, the CS and VR alpha SNR
groups are equivalent (mean difference = −0.002,
epsilon= 0.041, p< .001).Within the stand condition,
the CS and VR alpha SNR groups are also equivalent
(mean difference = −0.010, epsilon = 0.041,
p < .001). Similarly, posture did not exhibit a
significant main effect, F(1, 21) = 9.55, p = .289.
Another two TOST procedures with an epsilon of the
standard deviation of the alpha SNR in the CS-sit
conditionwere conducted for the sit and stand posture
sub-groups within the CS and VR groups. Within the
CS condition, the sit and stand alpha SNR groups are
equivalent (mean difference= 0.010, epsilon= 0.041,
p < .001). Within the VR condition, the sit and stand
alpha SNR groups are also equivalent (mean differ-
ence = 0.002, epsilon = 0.041, p < .001). The
interaction betweenmodality and posture was also not
significant, F(1, 21) = 0.602, p = .447. Hence, the
alpha SNR values do not significantly differ across
levels of modality or posture, and there is no signifi-
cant interaction between these two factors when it
comes to alpha-specific signal-to-noise-ratios.

The second ANOVA test yielded amain significant
effect of the modality for theta SNR values, F(1,21) =
5.311, p= .031. A post hoc pairwise comparison of the
marginal means with Bonferroni adjustment revealed
that the theta SNR for the CS modality (M = 0.157,
SD = 0.040) is significantly higher than for the VR
modality (M= 0.144, SD= 0.037) (p= .031). Posture
did not have a significant main effect at the level of
theta SNR, F(1,21)= 1.415, p= .248, nor did the inter-
action betweenmodality and posture, F(1,21)= 3.845,
p= .063. Two TOST procedures with an epsilon of the
standard deviation of the theta SNR in the CS-sit con-
dition were conducted for the sit and stand posture
sub-groups within the CS and VR groups. Within the
CS condition, the sit and stand theta SNR groups are
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equivalent (mean difference= 0.005, epsilon= 0.042,
p < .001). Within the VR condition, the sit and stand
theta SNR groups are not equivalent (mean differ-
ence = −0.023, epsilon = 0.042, p = .058). The dis-
tribution of the alpha SNR and theta SNR values is
illustrated infigures 5 and 6, respectively.

3.1.3. Signal of interest
To ensure the validity of the neurophysiological effects
of the workload-inducing paradigm, topographical
plots of the theta (4–8 Hz) and alpha (8–13 Hz) band
activity were generated across subjects, conditions,
and workload levels, which allowed for the visual
inspection of the spectral power distributions. Figure 7
illustrates these topographical plots. In this figure, a

frontal increase in the theta level and a parietal
decrease in the alpha level can be observed during high
workload, as expected. Averaged event-related spectral
perturbation (ERSP) plots for Fz and Pz channels
across 10s trials further confirm these neurophysiolo-
gical effects for all conditions (figure 8). Statistical tests
were conducted to investigate differences in band
power between conditions. The theta band powers for
resting state (no workload) trials represented the
dependent variable in a first two-way factorial
ANOVA.Our analyses found nomain effect of posture
(F(1, 21) = 0.028, p = .869). Two TOST procedures
with an epsilon of the standard deviation of the theta
rest power in the CS-sit condition were conducted for
the sit and stand posture sub-groupswithin the CS and

Figure 5.Data distributions of alpha Signal-to-Noise Ratio (SNR) values for the four conditions. Connected points across conditions
represent pairedmeasurements from the same subjects.

Figure 6.Data distributions of theta Signal-to-Noise Ratio (SNR) values for the four conditions. Connected points across conditions
represent pairedmeasurements from the same subjects.
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VR groups. Within the CS condition, the sit and stand
rest theta power groups are equivalent (mean differ-
ence=−0.334, epsilon= 2.458, p< .001). Within the
VR condition, the sit and stand rest theta power groups
are also equivalent (mean difference = 0.468, epsi-
lon = 2.458, p < .001). However, a main significant
effect of modality was found (F(1, 21) = 15.11, p
<.001). A post hoc pairwise comparison of the
marginal means with Bonferroni adjustment con-
firmed that the rest theta band power for the CS
modality (M = 6.842, SD = 2.455) is significantly
higher than for the VR modality (M = 6.034,
SD = 2.391) (p < .001). The interaction between
modality and posture was not significant (F(1,
21)= 2.07, p= .165).

A second ANOVA test was conducted for the rest-
ing state (no workload) alpha band power. There was
no significant main effect of posture (F(1, 21) = 0.35,
p= .56). Two TOST procedures with an epsilon of the

standard deviation of the alpha rest power in theCS-sit
condition were performed for the sit and stand pos-
ture sub-groups within the CS and VR groups. Within
the CS condition, the sit and stand rest alpha power
groups are equivalent (mean difference = −0.112,
epsilon = 3.413, p < .001). Within the VR condition,
the sit and stand rest alpha power groups are also
equivalent (mean difference= 0.523, epsilon= 3.413,
p< .001). There was also no significant main effect of
modality (F(1, 21)= .193, p= .665) or, posture-mod-
ality interaction (F(1, 21) = 1.125, p = .301) on rest
alpha bandpower. Another two TOST procedures
with an epsilon of the standard deviation of the alpha
rest power in the CS-sit condition were conducted for
the CS and VRmodality sub-groups within the sit and
VR stand groups. Within the sit condition, the CS and
VR rest alpha power groups are equivalent (mean dif-
ference= −0.448, epsilon = 3.413, p < .001). Within
the VR condition, the sit and stand rest alpha power

Figure 7. Scalp topographicalmaps illustrating the alpha (top rows) and theta (bottom rows) power for ‘noworkload’ and ‘high
workload’ trials averaged across time, trials and subjects for the four experimental setups.
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groups are also equivalent (mean difference = 0.186,
epsilon= 3.413, p< .001).

3.2. pBCI decoding performance results
Table 1 reports the average accuracies obtained on the
test data for each condition. According to the ANOVA
test, there were no main effects of posture (F(1,
21)= 0.042, p= .839).

Two TOST procedures with an epsilon of the stan-
dard deviation of the test accuracies in the CS-sit con-
dition were conducted for the sit and stand posture
sub-groups within the CS and VR groups. Within the
CS condition, the sit and stand pBCI accuracy groups

are equivalent (mean difference = −0.021, epsi-
lon = 0.099, p < .001). Within the VR condition, the
sit and stand pBCI accuracy groups are also equivalent

Figure 8.Time-frequency representations of the EEGdata at Fz and Pz channels for ‘noworkload’ and ‘highworkload’ averaged
across subjects and the 10-second trials for the four experimental setups.

Table 1. pBCI decoding performancemetrics.

Condition Test TP (%) Test TN (%) Test accuracy (%)

CS - sit 72 71 71

CS - stand 75 73 74

VR - sit 76 73 74

VR - stand 71 72 72

TP=True positives; TN=True negatives
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(mean difference = 0.028, epsilon = 0.099, p = .003).
The main effect of modality (F(1,21)= 0.05, p= .826)
or posture-modality interaction (F(1, 21) = 2.311,
p = .143) at the level of average pBCI accuracies were
also not significant. Two TOST procedures with an
epsilon of the standard deviation of the test accuracies
in the CS-sit condition were conducted for the CS and
VR modality sub-groups within the sit and stand
groups. Within the sit condition, the CS and VR pBCI
accuracy groups are equivalent (mean differ-
ence=−0.028, epsilon= 0.099, p= .002). Within the
stand condition, the CS and VR pBCI accuracy groups
are also equivalent (mean difference = 0.021, epsi-
lon= 0.099, p= .001). Hence, the pBCI accuracies are
not significantly different across the levels of modality
and posture and there is no significant interaction
between these two factors.

3.3. Cross-context application performance results
The overall average cross-context application perfor-
mance across conditions is shown in figure 9. The
cross-context application performance (M = 0.659,
SD = 0.114) was decreased in comparison with the
average pBCI decoding performance reported in the
above section (M = 0.728, SD = 0.104). The one-way
repeated measures ANOVA model revealed a statisti-
cally significant effect for the cross-context condition (F
(3, 63)= 23, p< .001). A post hoc pairwise comparison
of the marginal means with Bonferroni adjustment led
to significant differences between the condition groups.
The fully congruent condition (M= 0.728, SD= 0.105)
yielded significantly higher accuracy compared to the
fully incongruent condition (M = 0.650, SD = 0.115)
(p < .001), the congruent posture & incongruent
modality condition (M= 0.648, SD= 0.117) (p< .001),
and the congruent modality & incongruent posture
condition (M = 0.680, SD = 0.111) (p < .001). Addi-
tionally, the congruentmodality & incongruent posture

condition (M = 0.680, SD= 0.111) led to significantly
higher accuracy compared to the fully incongruent
condition (M = 0.650, SD = 0.115) (p = .04) and the
congruent posture & incongruent modality condition
(M = 0.648, SD = 0.117) (p = .03). There was no
significant difference between the fully incongruent
(M = 0.650, SD = 0.115) and congruent posture &
incongruent modality (M= 0.648, SD= 0.117) condi-
tion (p= .99).

The TOST analysis revealed that the fully incon-
gruent and congruent posture & incongruent mod-
ality cross-context accuracy groups are equivalent
(mean difference=−0.03, epsilon= 0.099, p< .001).
These results suggest that better workload decoding
can be achieved in a new context, if the classifier is
trained on data recorded within the same condition.
Figure 10 depicts thesefindings.

3.4. Summary of significant results
To facilitate clarity and provide a concise overview of
the key findings, table 2 summarizes the statistically
significant differences observed across the different
analyses.

4.Discussion

4.1.Overview
Passive BCIs have tremendous potential for real-life
application, enabling new ways of human-machine
communication–if they can be meaningfully deployed
in real-life contexts. With our study, we intended to
provide new insights into the contextual feasibility of
pBCI by studying the effect of modality- and posture-
related variations in the signal and classifier perfor-
mance, as these two dimensions are highly relevant to
real-life applicability.

Figure 9.Cross-context application performance (i.e. average accuracies) obtained across all conditions. Each boxplot shows the
distribution of accuracies when the classifier, trained in a specific condition (indicated on the x-axis), is tested on different conditions
(color-coded categories).
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Does the modality of task presentation or posture
affect the power in the rest alpha and rest theta frequency
bands, the signal-to-noise ratio andmuscle activity?

Our results indicate that the EEG signals relevant
for a workload classifier are partly altered by posture
and by themodality of task presentation.More specifi-
cally, we observed more muscle artifacts present when
the task was completed in an upright posture, as
opposed to a sitting posture in one of the 5 investigated
channel regions, the occipital region. Observing more
muscle activity in an upright posture is consistent with
the muscle argument and in line with studies that
found an increased electromyography (EMG) activity
in the trunk when standing standing, compared to sit-
ting postures [97, 98] or particular changes in the EEG
signal in the occipital region during when standing
up [27, 33].

Posture did not appear to have a significant effect

on the parietal rest alpha and frontal rest theta, our sig-

nals of interest. These observations are in contrast with

some prior analyses that found neurophysiological

differences between different postural conditions

[33, 34], but is not entirely suprising given that the

experimental design did not involve significant physi-

cal movement. However, we found that the modality

of task presentation had a significant effect on the

frontal rest theta power.
Similarly, the modality had a significant main

effect on the theta SNR, corroborating findings from
previous studies that looked at the impact of HMD-
VR on EEG and found variations at the level of the sig-
nal [71]. Nevertheless, this finding is noteworthy given
that the additional disturbance brought by HMD-VR
usually alters higher frequencies (above 50 Hz)

Figure 10.Cross-context test accuracies of pBCI classifiers under different posture andmodality congruency conditions. Fully
congruent conditions show the highest accuracy, while accuracy dropswhen posture ormodality becomes incongruent. There is no
significant difference (’ns’) between fully incongruent and congruent posture/incongruentmodality. Statistical significance ismarked
by *p< 0.05, **p< 0.01, **p< 0.001.

Table 2. Significant differences found between groups for each analysis.

Analysis Comparison P-value

Muscle activity standingVersus sitting (occipital region) p= .041

Theta SNR CSVersusVR p= .031

Frontal rest theta power CSVersusVR p< .001

Cross-context application Performance fully congruent Versus fully incongruent p< .001

fully congruent Versus congruentmodality & incongruent posture p< .001

fully congruent Versus congruent posture& incongruentmodality p< .001

fully incongruent Versus congruentmodality & incongruent posture p= .04

fully incongruent Versus congruent posture & incongruentmodality p= .03
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[69, 93]. This effect was not found at the level of alpha
SNR. In line with the results on the rest alpha and theta
power, posture did not significantly change the theta
SNR or alpha SNR. In short, our first set of hypotheses
on the impact of standing posture and HMD-VR
headsets was partially confirmed.

Does the modality of task presentation or posture
matter for the pBCI’s ability to decodemental states?

Although analyzing the signal changes across con-
ditions was an important prerequisite to under-
standing how these variations can affect the pBCI
classification, our main focus was to investigate if
pBCIs remain robust in unconventional situations.
According to our results, the calibration algorithm is
not significantly influenced by the signal variations,
and no significant differences in classification cap-
abilities were found between conditions. Hence, the
second set of hypotheses stating that the pBCI perfor-
mance in workload detection will be affected by the
potential EEG alterations was not confirmed.

These results are in line with other studies that
investigated the feasibility of decoding mental states in
standing conditions for reactive BCI [41] or active BCI
[40], but there is no prior research involving a com-
parative analysis for pBCI in different postures. A case
study on the feasibility of MI-BCI in sitting and stand-
ing, which found that despite different EEG patterns
occurring between the two postures, imagined hand
movement classification is possible in both [40]. Our
results are also in line with a study that assessed how a
P300-based BCI performs with stimuli presented in
augmented reality (AR) across 3 postural settings (sit-
ting, standing, and walking in place) [99]. According
to the author’s analysis, the area amplitude and latency
of the P300 and N200 components did not change
with posture, indicating that P300-based BCIs might
be suitable for diverse postural conditions. In compar-
ison to such studies that focused on active and reactive
BCIs, the present investigation explored the distinct
signals relevant for pBCIs in the face of changes in con-
text (posture and modality). Our findings provide a
hopeful perspective for the usability of BCIs in general,
and specifically for the feasibility of pBCIs for gaming,
work settings and leisure activities.

How well can classifiers generalize across body pos-
ture and stimulus presentationmodality conditions?

Significant effort has been put lately into solving
the problem of generalization for BCIs [100]. Here we
investigated transfer learning in a new way. Instead of
task-/session- or subject independence, we looked at
how a pBCI workload classifier can generalize across
different context changes in terms of body posture or
presentation modality. We observed that changes to
the modality or posture conditions lead to a decrease
in accuracy, while the best test classifier performance is
achieved when the modality and posture conditions
are kept constant. The classification is particularly
impacted when both modality and posture differ from
the training conditions. The non-significant difference

between the fully incongruent and congruent posture
& incongruent modality conditions indicates that
keeping the posture congruent doesn’t significantly
boost the classifier accuracy when modality is incon-
gruent. These results also match the findings obtained
for the EEG signal, where themodality factor had a sig-
nificant effect on the frontal rest theta power and theta
SNR. For practical applications that require a high
level of accuracy, this finding could suggest that ensur-
ing consistency for the task presentation modality
might bring more advantages to the pBCI perfor-
mance, compared to body posture consistency. Con-
firming our third hypothesis, the results indicate one
should be aware of potential drops in accuracy if the
mental state classification model was trained on data
recorded in a different modality or posture, but the
decoding can still be achieved in a relatively robust
way. Improvements for cross-context transfer might
come from research on domain adaptation that aims
to resolve the disparity in EEG signal distribution
across conditions through methods such as one-to-
one andmany-to-one transfer schemes [101].

4.2. Limitations and future directions
Our investigation on postural differences is limited to
only two static postures, while there exists a broad
range of positions a pBCI user might find themselves
in. A deeper understanding of the technology’s
feasibility in real contexts would require a more in-
depth analysis of how pBCI performs in various body
movements. Recent MoBI studies have looked at the
brain dynamics and natural cognition in active states
such as walking in real [102] or virtual [103] environ-
ments. While classification has been investigated
during walking for reactive BCI [104], it remains to be
seen if pBCI can be reliably used in movement-prone
situations. Given a surge in interest in VR and BCI
synergy, it would be especially interesting to expand
the pBCI-HMD-VR research to study the capabilities
of dynamic immersive games or tasks that make use of
pBCIs.

While our study eases some of the common con-
cerns associated with respect to the interference of the
equipment [55] in such pBCI-HMD-VR research and
applications, the results were obtained on average SNR
metrics across all channels, for the specific case of gel
electrodes. Despite a persistent lack of trust in non-gel
electrodes in EEG laboratories [105], an improved sig-
nal-to-noise ratio in newer devices was observed
[18, 106, 107] and some proof that pBCIs can operate
adequately with dry electrodes even under less con-
trolled conditions [108]. Standard high-density dry
electrodes solve the problem of a lengthy application
process to the scalp, but the trade-off in signal quality
and rapid decline in comfort due to friction and pres-
sure to the head [109] make them unsuitable candi-
dates for VR displays for now. With the surge in
interest for both BCI and VR, a lot of engineering
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effort is currently put into creating more user-friendly
equipment [18]. Also, more sparse, dorsal electrode
layouts could be suitable for EEG recordings and ana-
lysis and might offer solutions to the problem of VR
interference [110]. In recent years, around-the-ear
electrodes (cEEGgrids) have been manufactured and
tested [111]. These could be viable and more user-
friendly alternatives for brain electrical activity record-
ing, as well as better suited to combine with VR devi-
ces, eliminating the problem of added pressure.
Hence, our findings represent a preliminary view into
the feasibility of the pBCI-VR combination, but more
research is needed to explore other electrode density
types (e.g. 64 electrodes Versus 16 electrodes), elec-
trode positioning (e.g. on scalp Versus around the
ears) and electrode interface types (e.g. gel Versus dry).
Such additional studies might help the field to find a
good balance between decoding performance, cost,
and ease of use and propel pBCI into more practical
settings. Moreover, the present methods were inten-
ded to simulate an online scenario, with the assump-
tion that the obtained results would also be suitable for
real-time classification. Still, we chose to remove the
eye components from the signal withAMICA,which is
too computationally demanding to fit the timing con-
straints of online scenarios. Instead, a more suitable
version of ICA might be ORICA [112]. These findings
may also not generalize to pBCI classifiers that are
trained with other feature types. For instance, more
work is needed to understand if pBCIs based on time-
domain features or time-frequency domain features
remain robust across variations in contexts.

5. Conclusions

This study is a step forward to a better understanding
of pBCIs’ applicability to real-world scenarios, specifi-
cally when users are more mobile and may be using
VR. Despite some alterations in signal and cross-
context performance, we found that the task presenta-
tionmodality and subject posture did not significantly
impact the ability of a classifier to decode mental state
information.
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